Skip to main content

Hybrid Randomised Neighbourhoods Improve Stochastic Local Search for DNA Code Design

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2671))

Abstract

Sets of DNA strands that satisfy combinatorial constraints play an important role in various approaches to biomolecular computation, nanostructure design, and molecular tagging. The problem of designing such sets of DNA strands, also known as the DNA code design problem, appears to be computationally hard. In this paper, we show how a recently proposed stochastic local search algorithm for DNA code design can be improved by using hybrid, randomised neighbourhoods. This new type of neighbourhoods tructure equally supports small changes to a given candidate set of strands as well as much larger modi.cations, which correspondt o random, long range connections in the search space induced by the standard (1-mutation) neighbourhood. We report several cases in which our algorithm finds wordset s that match or exceedt he best previously known constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. S. Braich, C. Johnson, P.W.K. Rothemund, D. Hwang, N. Chelyapov, and L. M. Adleman, “Solution of a satisfiability problem on a gel-based DNA computer”, Preliminary Proc. Sixth International Meeting on DNA Based Computers, Leiden, The Netherlands, June, 2000.

    Google Scholar 

  2. S. Brenner and R. A. Lerner, “Encoded combinatorial chemistry”, Proc. Natl. Acad. Sci. USA, Vol 89, pages 5381–5383, June 1992.

    Article  Google Scholar 

  3. R. Deaton, R. C. Murphy, M. Garzon, D. R. Franceschetti, and S. E. Stevens, Jr., “Good encodings for DNA-based solutions to combinatorial problems,” Proc. DNA Based Computers II, DIMACS Workshop June 10–12, 1996, L. F. Landweber and E.B. Baum, Editors, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 44, pages 247–258, 1999.

    Google Scholar 

  4. R. Deaton, M. Garzon, R. C. Murphy, J. A. Rose, D. R. Franceschetti, and S. E. Stevens, Jr., “ Genetic search of reliable encodings for DNA-based computation,” Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors), Proceedings of the First Annual Conference on Genetic Programming 1996.

    Google Scholar 

  5. A. A. El Gamal, L. A. Hemachandra, I. Shperling, and V. K. Wei, “Using simulated annealing to design good codes,” IEEE Transactions on Information Theory, Vol. IT-33, No. 1, January 1987.

    Google Scholar 

  6. D. Faulhammer, A. R. Cukras, R. J. Lipton, and L. F. Landweber, “Molecular computation: RNA solutions to chess problems,” Proc. Natl. Acad. Sci. USA, 97: 1385–1389, 2000.

    Article  Google Scholar 

  7. U. Feldkamp, W. Banzhaf, H. Rauhe, “A DNA sequence compiler,” Poster presented at the 6th International Meeting on DNA Based Computers, Leiden, June, 2000. See also http://ls11-www.cs.uni-dortmund.de/molcomp/Publications/publications.html (visited November 11, 2000).

  8. A.G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith, and R. M. Corn, “ Demonstration of a word design strategy for DNA computing on surfaces,” Nucleic Acids Research, Vol. 25, No. 23, pages 4748–4757, December 1997.

    Article  Google Scholar 

  9. A. J. Hartemink, D. K. Gifford, and J. Khodor, “Automated constraint-based nucleotide sequence selection for DNA computation,” 4th Annual DIMACS Workshop on DNA-Based Computers, Philadelphia, Pennsylvania, June 1998.

    Google Scholar 

  10. I. S. Honkala, and P. R. J. Ostergard, “Code design,” In Local Search In Combinatorial Optimization (E. Aarts and J. K. Lenstra, eds.), Wiley-Interscience Series in Discrete Mathematics and Optimization, 1997.

    Google Scholar 

  11. H. H. Hoos, “Stochastic Local Search-Methods, Models, Applications”, infix-Verlag, Sankt Augustin, Germany, ISBN 3-89601-215-0, 1999.

    MATH  Google Scholar 

  12. H. H. Hoos and T. Stutzle, “Evaluating Las Vegas Algorithms — Pitfalls and Remedies,” In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 238–245, 1998.

    Google Scholar 

  13. M. Li, H-J. Lee, A. E. Condon, and R. M. Corn, “DNA Word Design Strategy for Creating Sets of Non-interacting Oligonucleotides for DNA Microarrays,” Langmuir, 18, pages 805–812, 2002.

    Article  Google Scholar 

  14. A. Marathe, A. Condon, and R. Corn, “On combinatorial DNA word design,” J. Computational Biology, 8:3, pages 201–220, 2001.

    Article  MATH  Google Scholar 

  15. Programmable DNA web site, http://ls11-www.cs.uni-dortmund.de/molcomp/Downloads/downloads.html. Visited November 11, 2000.

  16. J. H. Reif, T. H. LaBean, and N. C. Seeman, “Challenges and Applications for Self-Assembled DNA Nanostructures”, Proc. Sixth Inter.l Workshop on DNA-Based Computers, Leiden, The Neth., June, 2000. DIMACS Ed. by A. Condon and G. Rozenberg, Lecture Notes in CS, Springer-Verlag, Berlin Heidelberg, vol. 2054, pages 173–198, 2001.

    Google Scholar 

  17. D. C. Tulpan, H. H. Hoos, A. Condon, “Stochastic Local Search Algorithms for DNA WordD esign”, DNA 8 Conference, Japan, March 2002.

    Google Scholar 

  18. B. Yurke, A. J. Tuberfield, A. P. Jr Mills, F. C. Simmel and J. L. Neumann, “A DNA-fuelled molecular machine made of DNA.” Nature 406, pages 605–608,2000.

    Article  Google Scholar 

  19. B-T. Zhang and S-Y. Shin, “Molecular algorithms for effcient and reliable DNA computing,” Proc. 3rd Annual Genetic Programming Conference, Edited by J. R. Koza, K. Deb, M. Doringo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Morgan Kaufmann, pages 735–742, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tulpan, D.C., Hoos, H.H. (2003). Hybrid Randomised Neighbourhoods Improve Stochastic Local Search for DNA Code Design. In: Xiang, Y., Chaib-draa, B. (eds) Advances in Artificial Intelligence. Canadian AI 2003. Lecture Notes in Computer Science, vol 2671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44886-1_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-44886-1_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40300-5

  • Online ISBN: 978-3-540-44886-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics