Skip to main content

Online Response Time Optimization of Apache Web Server

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2707))

Abstract

Properly optimizing the setting of configuration parameters can greatly improve performance, especially in the presence of changing workloads. This paper explores approaches to online optimization of the Apache web server, focusing on the MaxClients parameter (which controls the maximum number of workers). Using both empirical and analytic techniques, we show that MaxClients has a concave upward effect on response time and hence hill climbing techniques can be used to find the optimal value of MaxClients. We investigate two optimizers that employ hill climbing—one based on Newton’s Method and the second based on fuzzy control. A third technique is a heuristic that exploits relationships between bottleneck utilizations and response time minimization. In all cases, online optimization reduces response times by a factor of 10 or more compared to using a static, default value. The trade-offs between the online schemes are as follows. Newton’s method is well known but does not produce consistent results for highly variable data such as response times. Fuzzy control is more robust, but converges slowly. The heuristic works well in our prototype system, but it may be difficult to generalize because it requires knowledge of bottleneck resources and an ability to measure their utilizations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Diao, J. L. Hellerstein, and S. Parekh, “Optimizing quality of service using fuzzy control,” in Proceedings of Distributed Systems Operations and Management, 2002.

    Google Scholar 

  2. Apache Software Foundation. http://www.apache.org.

    Google Scholar 

  3. Y. Diao, J. L. Hellerstein, and S. Parekh, “A business-oriented approach to the design of feedback loops for performance management,” in Proceedings of Distributed Systems Operations and Management, 2001.

    Google Scholar 

  4. C. Lu, T. Abdelzaher, J. Stankovic, and S. Son, “A feedback control approach for guaranteeing relative delays in web servers,” in Proceedings of the IEEE Real-Time Technology and Applications Symposium, 2001.

    Google Scholar 

  5. Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury, “Using MIMO feedback control to enforce policies for interrelated metrics with application to the Apache web server,” in Proceedings of Network Operations and Management, 2002.

    Google Scholar 

  6. L. Sha, X. Liu, Y. Lu, and T. Abdelzaher, “Queuing model based network server performance control,” in Proceedings of the IEEE Real-Time Systems Symposium, 2002.

    Google Scholar 

  7. D. Menasce, V. Almeida, R. Fonsece, and M. Mendes, “Busines oriented resource management policies for e-commerce servers,” Performance Evaluation, vol. 42, pp. 223–239, Oct. 2000.

    Article  Google Scholar 

  8. Z. Liu, M. S. Squillante, and J. L. Wolf, “On maximizing service-level-agreement profits,” in Proceedings of the ACM Conference on Electronic Commerce (EC’01), 2001.

    Google Scholar 

  9. I. Mindcraft, “Webstone 2.5 web server benchmark,” 1998. http://www.mindcraft.com/webstone/.

    Google Scholar 

  10. Z. Liu, N. Niclausse, C. Jalpa-Villanueva, and S. Barbier, “Traffic model and performance evaluation of web servers,” Tech. Rep. 3840, INRIA, Dec. 1999.

    Google Scholar 

  11. D. Mosberger and T. Jin, “httperf: A tool for measuring web server performance,” in First Workshop on Internet Server Performance (WISP 98), pp. 59–67, ACM, June 1998.

    Google Scholar 

  12. D. P. Olshefski, J. Nieh, and D. Agrawal, “Inferring client response time at the web server,” in Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, 2002.

    Google Scholar 

  13. S. S. Lavenberg, ed., Computer performance modeling handbook. Orlando, FL: Academic Press, INC, 1983.

    MATH  Google Scholar 

  14. A. L. Perssini, The Mathematics of Nonlinear Programming. Springer-Verlag, 1988.

    Google Scholar 

  15. K. M. Passino and S. Yurkovich, Fuzzy Control. Menlo Park, CA: Addison Wesley Longman, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J.L., Parekh, S. (2003). Online Response Time Optimization of Apache Web Server. In: Jeffay, K., Stoica, I., Wehrle, K. (eds) Quality of Service — IWQoS 2003. IWQoS 2003. Lecture Notes in Computer Science, vol 2707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44884-5_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-44884-5_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40281-7

  • Online ISBN: 978-3-540-44884-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics