Skip to main content

Towards Patient Specific Models of Cardiac Mechanics: A Sensitivity Study

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2674))

Included in the following conference series:

Abstract

In the design of patient specific mathematical models of cardiac mechanics, the lack of patient specific input data leads to default settings of various model parameters. To estimate the potential errors thus introduced, we evaluated changes in predicted mechanics in a model of the left ventricle (LV) induced by changes in geometry, fiber orientation, heterogeneity of passive material behavior and triaxial active stress development.

Incorporation of measured heterogeneity of passive stiffness did not affect systolic mechanics. Incorporation of triaxial active stress development did significantly affect systolic mechanics, but knowledge on this mechanism is too limited to draw conclusions.

LV geometry variations covering the biological range changed the equatorial distribution of active myofiber stress and shortening by about 10 to 15%. Similar changes were found by variation of fiber orientation by 8° at maximum. Since this change in orientation is at the edge of the accuracy, with which myofiber orientation can be measured in vitro, and far below the accuracy, obtainable for in vivo measurements, we conclude that the benefit of accounting for patient specific geometry is questionable when using experimental data on fiber orientation. We propose to select myofiber orientation such, that myofiber load is distributed homogeneously across the cardiac wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Abdulla, M.J. Frank, M.I. Canedo, and M.A. Stefadouros. Limitations of echocardiography in the assessment of left ventricular size and function in aortic regurgitation. Circulation, 61:148–155, 1980.

    Google Scholar 

  2. E.A. Bocchi, L.F. Moreira, A.V. de Moraes, G. Bellotti, M. Gama, N.A.G. Stolf, A.D. Jatene, and F. Pileggi. Effects of dynamic cadiomyoplasty on regional wall motion, ejection fraction and geometry of the left ventricle. Circulation, 86,supp II:II231–II235, 1992.

    Google Scholar 

  3. P.H.M. Bovendeerd, T. Arts, J.M. Huyghe, D.H. van Campen, and R.S. Reneman. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: A model study. J Biomech., 25:1129–1140, 1992.

    Article  Google Scholar 

  4. P.H.M. Bovendeerd, J.M. Huyghe, T. Arts, D.H. van Campen, and R.S. Reneman. Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics. J Biomech., 27: 941–951, 1994.

    Article  Google Scholar 

  5. L. Geerts, P.H.M. Bovendeerd, K. Nicolay, and T. Arts. Characterization of the normal cardiac myofiber field in goat measured with MR diffusion tensor imaging. Am. J. Physiol., 283, H126–H138, 2002.

    Google Scholar 

  6. J.J. Gomez-Doblas, J. Schor, P. Vignola, D. Weinberg, E. Traad, R. Carrillo, D. Williams, and G.A. Lamas. Left ventricular geometry and operative mortality in patients undergoing mitral valve replacement. Clin Cardiol, 24:717–722, 2001.

    Article  Google Scholar 

  7. J.W. Holmes, D.F. Scollan, and R.L. Winslow. Direct histological validation of diffusion tensor mri in formaldehyde-fixed myocardium. Magn Reson Med., 44:157–161, 2000.

    Article  Google Scholar 

  8. E.W. Hsu, A.L. Muzikant, S.A. Matulevicius, R.C. Penland, and C.S. Henriques. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol., 274:H1627–H1634, 1998.

    Google Scholar 

  9. D.H.S. Lin and F.C.P. Yin. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J Biomech Eng., 120:504–517, 1998.

    Article  Google Scholar 

  10. T. Matsushita, M. Oyamada, K. Fujimoto, Y. Yasuda, S. Masuda, Y. Wada, T. Oka and, T. Takamatsu. Remodeling of cell-cell and cell-extracellular matrix interactions at the borderzone of rat myocardial infarcts. Circ Res., 85:1046–1055, 1999.

    Google Scholar 

  11. V.P. Novak, F.C.P. Yin, and J.D. Humphrey. Regional and mechanical properties of passive myocardium. J Biomech., 27:403–412, 1994.

    Article  Google Scholar 

  12. T.G. Reese, R.M. Weisskoff, R.N. Smith, B.R. Rosen, R.E. Dinsmore, and V.J. Wedeen. Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med., 34:786–791, 1995.

    Article  Google Scholar 

  13. J. Rijcken, P.H.M. Bovendeerd, A.J.G. Schoofs, D.H. van Campen, and T. Arts. Optimization of cardiac fiber orientation for homogeneous fiber strain at beginning of ejection. J Biomech., 30:1041–1049, 1997.

    Article  Google Scholar 

  14. J. Rijcken, P.H.M. Bovendeerd, A.J.G. Schoofs, D.H. van Campen, and T. Arts. Optimization of cardiac fiber orientation for homogeneous fiber strain during ejection. Ann Biomed Eng., 27:289–297, 1999.

    Article  Google Scholar 

  15. D.F. Scollan, A. Holmes, R. Winslow, and J. Forder. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol., 275:H2308–H2318, 1998.

    Google Scholar 

  16. D.D. Streeter. Gross morphology and fiber geometry of the heart. In R.M. Berne, editor, Handbook of physiology — The Cardiovascular system I. American physiological society, 1979.

    Google Scholar 

  17. W.-Y.I. Tseng, T.G. Reese, R.M. Weisskoff, T.J. Brady, and V.J. Wedeen. Myocardial fiber shortening in humans: Initial results of MR imaging. Radiology, 216:128–139, 2000.

    Google Scholar 

  18. W.-Y.I. Tseng, T.G. Reese, R.M. Weisskoff, and V.J. Wedeen. Cardiac diffusion tensor MRI in vivo without strain correction. Magn Reson Med., 42:393–403, 1999.

    Article  Google Scholar 

  19. T.P. Usyk, R. Mazhari, and A.D. McCulloch. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast., 61:143–164, 2000.

    Article  MATH  Google Scholar 

  20. M. Vendelin, P.H.M. Bovendeerd, T. Arts, J. Engelbrecht, and D.H. van Campen. Cardiac mechanoenergetics replicated by cross-bridge model. Ann Biomed Eng., 28:629–640, 2000.

    Article  Google Scholar 

  21. M. Vendelin, P.H.M. Bovendeerd, J. Engelbrecht, and T. Arts. Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am. J. Physiol., 283:H1072–H1081, 2002.

    Google Scholar 

  22. P.S. Vokonas, R. Gorlin, P.F. Crhon, M.V. Herman, and E.H. Sonnenblick. Dynamic geometry of the left ventricle in mitral regurgitation. Circulation, 48:786–795, 1973.

    Google Scholar 

  23. N. Westerhof, G. Elzinga, and G.C. van den Bos. Influence of central and peripherical changes on the hydraulic input impedance of the systemic arterial tree. Med Biol Eng., 11:710–723, 1973.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geerts, L., Kerckhoffs, R., Bovendeerd, P., Arts, T. (2003). Towards Patient Specific Models of Cardiac Mechanics: A Sensitivity Study. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2003. Lecture Notes in Computer Science, vol 2674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44883-7_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-44883-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40262-6

  • Online ISBN: 978-3-540-44883-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics