Towards Patient Specific Models of Cardiac Mechanics: A Sensitivity Study

  • Liesbeth Geerts
  • Roy Kerckhoffs
  • Peter Bovendeerd
  • Theo Arts
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2674)


In the design of patient specific mathematical models of cardiac mechanics, the lack of patient specific input data leads to default settings of various model parameters. To estimate the potential errors thus introduced, we evaluated changes in predicted mechanics in a model of the left ventricle (LV) induced by changes in geometry, fiber orientation, heterogeneity of passive material behavior and triaxial active stress development.

Incorporation of measured heterogeneity of passive stiffness did not affect systolic mechanics. Incorporation of triaxial active stress development did significantly affect systolic mechanics, but knowledge on this mechanism is too limited to draw conclusions.

LV geometry variations covering the biological range changed the equatorial distribution of active myofiber stress and shortening by about 10 to 15%. Similar changes were found by variation of fiber orientation by 8° at maximum. Since this change in orientation is at the edge of the accuracy, with which myofiber orientation can be measured in vitro, and far below the accuracy, obtainable for in vivo measurements, we conclude that the benefit of accounting for patient specific geometry is questionable when using experimental data on fiber orientation. We propose to select myofiber orientation such, that myofiber load is distributed homogeneously across the cardiac wall.


Sarcomere Length Helix Angle Cavity Pressure Cardiac Wall Cardiac Mechanics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.M. Abdulla, M.J. Frank, M.I. Canedo, and M.A. Stefadouros. Limitations of echocardiography in the assessment of left ventricular size and function in aortic regurgitation. Circulation, 61:148–155, 1980.Google Scholar
  2. 2.
    E.A. Bocchi, L.F. Moreira, A.V. de Moraes, G. Bellotti, M. Gama, N.A.G. Stolf, A.D. Jatene, and F. Pileggi. Effects of dynamic cadiomyoplasty on regional wall motion, ejection fraction and geometry of the left ventricle. Circulation, 86,supp II:II231–II235, 1992.Google Scholar
  3. 3.
    P.H.M. Bovendeerd, T. Arts, J.M. Huyghe, D.H. van Campen, and R.S. Reneman. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: A model study. J Biomech., 25:1129–1140, 1992.CrossRefGoogle Scholar
  4. 4.
    P.H.M. Bovendeerd, J.M. Huyghe, T. Arts, D.H. van Campen, and R.S. Reneman. Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics. J Biomech., 27: 941–951, 1994.CrossRefGoogle Scholar
  5. 5.
    L. Geerts, P.H.M. Bovendeerd, K. Nicolay, and T. Arts. Characterization of the normal cardiac myofiber field in goat measured with MR diffusion tensor imaging. Am. J. Physiol., 283, H126–H138, 2002.Google Scholar
  6. 6.
    J.J. Gomez-Doblas, J. Schor, P. Vignola, D. Weinberg, E. Traad, R. Carrillo, D. Williams, and G.A. Lamas. Left ventricular geometry and operative mortality in patients undergoing mitral valve replacement. Clin Cardiol, 24:717–722, 2001.CrossRefGoogle Scholar
  7. 7.
    J.W. Holmes, D.F. Scollan, and R.L. Winslow. Direct histological validation of diffusion tensor mri in formaldehyde-fixed myocardium. Magn Reson Med., 44:157–161, 2000.CrossRefGoogle Scholar
  8. 8.
    E.W. Hsu, A.L. Muzikant, S.A. Matulevicius, R.C. Penland, and C.S. Henriques. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol., 274:H1627–H1634, 1998.Google Scholar
  9. 9.
    D.H.S. Lin and F.C.P. Yin. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J Biomech Eng., 120:504–517, 1998.CrossRefGoogle Scholar
  10. 10.
    T. Matsushita, M. Oyamada, K. Fujimoto, Y. Yasuda, S. Masuda, Y. Wada, T. Oka and, T. Takamatsu. Remodeling of cell-cell and cell-extracellular matrix interactions at the borderzone of rat myocardial infarcts. Circ Res., 85:1046–1055, 1999.Google Scholar
  11. 11.
    V.P. Novak, F.C.P. Yin, and J.D. Humphrey. Regional and mechanical properties of passive myocardium. J Biomech., 27:403–412, 1994.CrossRefGoogle Scholar
  12. 12.
    T.G. Reese, R.M. Weisskoff, R.N. Smith, B.R. Rosen, R.E. Dinsmore, and V.J. Wedeen. Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med., 34:786–791, 1995.CrossRefGoogle Scholar
  13. 13.
    J. Rijcken, P.H.M. Bovendeerd, A.J.G. Schoofs, D.H. van Campen, and T. Arts. Optimization of cardiac fiber orientation for homogeneous fiber strain at beginning of ejection. J Biomech., 30:1041–1049, 1997.CrossRefGoogle Scholar
  14. 14.
    J. Rijcken, P.H.M. Bovendeerd, A.J.G. Schoofs, D.H. van Campen, and T. Arts. Optimization of cardiac fiber orientation for homogeneous fiber strain during ejection. Ann Biomed Eng., 27:289–297, 1999.CrossRefGoogle Scholar
  15. 15.
    D.F. Scollan, A. Holmes, R. Winslow, and J. Forder. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol., 275:H2308–H2318, 1998.Google Scholar
  16. 16.
    D.D. Streeter. Gross morphology and fiber geometry of the heart. In R.M. Berne, editor, Handbook of physiology — The Cardiovascular system I. American physiological society, 1979.Google Scholar
  17. 17.
    W.-Y.I. Tseng, T.G. Reese, R.M. Weisskoff, T.J. Brady, and V.J. Wedeen. Myocardial fiber shortening in humans: Initial results of MR imaging. Radiology, 216:128–139, 2000.Google Scholar
  18. 18.
    W.-Y.I. Tseng, T.G. Reese, R.M. Weisskoff, and V.J. Wedeen. Cardiac diffusion tensor MRI in vivo without strain correction. Magn Reson Med., 42:393–403, 1999.CrossRefGoogle Scholar
  19. 19.
    T.P. Usyk, R. Mazhari, and A.D. McCulloch. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast., 61:143–164, 2000.zbMATHCrossRefGoogle Scholar
  20. 20.
    M. Vendelin, P.H.M. Bovendeerd, T. Arts, J. Engelbrecht, and D.H. van Campen. Cardiac mechanoenergetics replicated by cross-bridge model. Ann Biomed Eng., 28:629–640, 2000.CrossRefGoogle Scholar
  21. 21.
    M. Vendelin, P.H.M. Bovendeerd, J. Engelbrecht, and T. Arts. Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am. J. Physiol., 283:H1072–H1081, 2002.Google Scholar
  22. 22.
    P.S. Vokonas, R. Gorlin, P.F. Crhon, M.V. Herman, and E.H. Sonnenblick. Dynamic geometry of the left ventricle in mitral regurgitation. Circulation, 48:786–795, 1973.Google Scholar
  23. 23.
    N. Westerhof, G. Elzinga, and G.C. van den Bos. Influence of central and peripherical changes on the hydraulic input impedance of the systemic arterial tree. Med Biol Eng., 11:710–723, 1973.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Liesbeth Geerts
    • 1
  • Roy Kerckhoffs
    • 1
  • Peter Bovendeerd
    • 1
  • Theo Arts
    • 1
    • 2
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Maastricht UniversityMaastrichtThe Netherlands

Personalised recommendations