Modeling of Electro-mechanical Coupling in Cardiac Myocytes: Feedback Mechanisms and Cooperativity

  • F. B. Sachse
  • K. Glänzel
  • G. Seemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2674)


Modeling of mechanisms involved in electrophysiology and tension development of cardiac myocytes can enhance the understanding of physiological and pathophysiological cardiac phenomena. Interactions of divers components are necessary for cellular electro-mechanics. Particularly, the interactions between proteins in the cell membrane, sarcoplasmic reticulum and sarcomere are of importance. In this work hybrid electro-mechanical models of cardiac myocytes were derived on basis of recently developed models as well as of measurements ranging from protein to multi-cell level. The models quantify dynamically the electrophysiology and tension development by states, partly associated to configurations of the involved proteins, and the transition between these states. The models allow the reconstruction of electro-mechanical phenomena. Results of simulations with the hybrid models were performed illustrating their properties. The models may help to clarify feedback and cooperativity mechanisms, pathophysiological changes and metabolism of myocytes.


Sarcoplasmic Reticulum Hybrid Model Intracellular Calcium Concentration Myosin Head Tension Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bers, D.M.: Cardiac excitation-contraction coupling. Nature 415 (2002) 198–205CrossRefGoogle Scholar
  2. 2.
    Sachse, F.B.: Modeling of the mammalian heart, Universität Karlsruhe (TH), Institut für Biomedizinische Technik (2002) Habilitationsschrift.Google Scholar
  3. 3.
    Noble, D., Varghese, A., Kohl, P., Noble, P.: Improved guinea-pig ventricular cell model incorporating a diadic space, IKr and IKs, and length-and tension-dependend processes. Can. J. Cardiol. 14 (1998) 123–134Google Scholar
  4. 4.
    Noble, P.:-. personal communication (2000)Google Scholar
  5. 5.
    Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B126 (1938) 136–195Google Scholar
  6. 6.
    Fabiato, A., Fabiato, F.: Contractions induced by a calcium-triggered release of calcium for the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. Lond. 249 (1975) 469–495Google Scholar
  7. 7.
    de Clerck, N.M., Claes, V.A., Brutsaert, D.L.: Force velocity relations of single cardiac muscle cells. J. Gen. Physiol. 69 (1977) 221–241CrossRefGoogle Scholar
  8. 8.
    Bers, D.M.: Excitation-Contraction Coupling and Cardiac Contractile Force. Kluwer Academic Publishers, Dordrecht, Netherlands (1991)Google Scholar
  9. 9.
    White, E., Guennec, J.Y.L., Nigretto, J.M., Gannier, F., Argibay, J.A., Garnier, D.: The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Experimental Physiol. (1993) 65–78Google Scholar
  10. 10.
    Gannier, F., Bernengo, J.C., Jacquemond, V., Garnier, D.: Measurements of sarcomere dynamics simultaneously with auxotonic force in isolated cardiac cells. IEEE Transactions on Biomedical Engineering 40 (1993) 1226–1232CrossRefGoogle Scholar
  11. 11.
    White, E., Boyett, M.R., Orchard, C.H.: The effects of mechanical loading and changes to length on single guinea-pig ventricular myocytes. J. Physiol. (1995) 93–107Google Scholar
  12. 12.
    Bluhm, W.F., McCulloch, A.D., Lew, W.Y.W.: Active force in rabbit ventricular myocytes. J. Biomechanics 28 (1995) 1119–1122CrossRefGoogle Scholar
  13. 13.
    Brandt, P.W., Colomo, F., Piroddi, N., Poggesi, C., Tesi, C.: Force regulation by Ca2+ in skinned single cardiac myocytes of frog. Biophys J 74 (1998) 1994–2004CrossRefGoogle Scholar
  14. 14.
    O’Rourke, B., Kass, D.A., Tomaselli, G.F., Kaab, S., Tunin, R., Marbán, E.: Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I experimental studies. Circ. Res 84(5) (1999) 562–570Google Scholar
  15. 15.
    Yasuda, S., Sugiura, S., Kobayakawa, N., Fjita, H., Yamashita, H., Katoh, K., Seaki, Y., Kaneko, H., Suda, Y., Nagai, R., Sugi, H.: A novel method to study contraction characteristics of a single cardiac myocyte using carbon fibers. Am. J. Physiol. 281 (2001) H1442–H1446Google Scholar
  16. 16.
    Irving, M., Goldman, Y.E.: Another step ahead for myosin. Nature 398 (1999) 463–465CrossRefGoogle Scholar
  17. 17.
    Kitamura, K., Tokunaga, M., Iwane, A.H., Yanagida, T.: A single myosin head moves along an actin filament with regular steps of 5.3 nanometeres. Nature 397 (1999) 129–134CrossRefGoogle Scholar
  18. 18.
    Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darneell, J.: Molekulare Zellbiologie. Spektrum Akademischer Verlag, Heidelberg, Berlin (2001)Google Scholar
  19. 19.
    Allen, D., Kurihara, S.: The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. 327 (1982) 79–94Google Scholar
  20. 20.
    Nagashima, H., Asakura, S.: Studies on co-operative properties of tropomyosin-actin and tropomyosin-troponin-actin complexes by use of N-ethylmaleinide-treated and untreated species of myosin subfragment. J. Mol. Bio. 155 (1982) 409–428CrossRefGoogle Scholar
  21. 21.
    Tobacman, L.: Thin filament mediated regulation of cardiac contraction. Ann. Rev. Physiol. 58 (1996) 447–481CrossRefGoogle Scholar
  22. 22.
    Spudich, J.A.: TIMELINE: The myosin swinging cross-bridge model. Nature Reviews Molecular Cell Biology 2 (2001) 387–392CrossRefGoogle Scholar
  23. 23.
    Glänzel, K.: Kraftentwicklung im Sarkomer unter Berücksichtigung elektromechanischer Kopplung. Diploma Thesis, Institut für Biomedizinische Technik, Universität Karlsruhe (TH) (2002)Google Scholar
  24. 24.
    Rice, J.J., Winslow, R.L., Hunter, W.C.: Comparison of putative cooperative mechanisms in cardiac muscle: length dependence and dynamic responses. Am. J. Physiol. Circ. Heart. 276 (1999) H1734–H1754Google Scholar
  25. 25.
    Gordon, A., Regnier, M., Homsher, E.: Skeletal and cardiac muscle contractile activation: Tropomyosin “rocks and rolls”. News Physiol. Sci. 16 (2001) 49–55Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • F. B. Sachse
    • 1
  • K. Glänzel
    • 1
  • G. Seemann
    • 1
  1. 1.Institut für Biomedizinische TechnikUniversität Karlsruhe (TH)Germany

Personalised recommendations