Skip to main content

Modeling of Electro-mechanical Coupling in Cardiac Myocytes: Feedback Mechanisms and Cooperativity

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2674))

Included in the following conference series:

Abstract

Modeling of mechanisms involved in electrophysiology and tension development of cardiac myocytes can enhance the understanding of physiological and pathophysiological cardiac phenomena. Interactions of divers components are necessary for cellular electro-mechanics. Particularly, the interactions between proteins in the cell membrane, sarcoplasmic reticulum and sarcomere are of importance. In this work hybrid electro-mechanical models of cardiac myocytes were derived on basis of recently developed models as well as of measurements ranging from protein to multi-cell level. The models quantify dynamically the electrophysiology and tension development by states, partly associated to configurations of the involved proteins, and the transition between these states. The models allow the reconstruction of electro-mechanical phenomena. Results of simulations with the hybrid models were performed illustrating their properties. The models may help to clarify feedback and cooperativity mechanisms, pathophysiological changes and metabolism of myocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bers, D.M.: Cardiac excitation-contraction coupling. Nature 415 (2002) 198–205

    Article  Google Scholar 

  2. Sachse, F.B.: Modeling of the mammalian heart, Universität Karlsruhe (TH), Institut für Biomedizinische Technik (2002) Habilitationsschrift.

    Google Scholar 

  3. Noble, D., Varghese, A., Kohl, P., Noble, P.: Improved guinea-pig ventricular cell model incorporating a diadic space, IKr and IKs, and length-and tension-dependend processes. Can. J. Cardiol. 14 (1998) 123–134

    Google Scholar 

  4. Noble, P.:-. personal communication (2000)

    Google Scholar 

  5. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B126 (1938) 136–195

    Google Scholar 

  6. Fabiato, A., Fabiato, F.: Contractions induced by a calcium-triggered release of calcium for the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. Lond. 249 (1975) 469–495

    Google Scholar 

  7. de Clerck, N.M., Claes, V.A., Brutsaert, D.L.: Force velocity relations of single cardiac muscle cells. J. Gen. Physiol. 69 (1977) 221–241

    Article  Google Scholar 

  8. Bers, D.M.: Excitation-Contraction Coupling and Cardiac Contractile Force. Kluwer Academic Publishers, Dordrecht, Netherlands (1991)

    Google Scholar 

  9. White, E., Guennec, J.Y.L., Nigretto, J.M., Gannier, F., Argibay, J.A., Garnier, D.: The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Experimental Physiol. (1993) 65–78

    Google Scholar 

  10. Gannier, F., Bernengo, J.C., Jacquemond, V., Garnier, D.: Measurements of sarcomere dynamics simultaneously with auxotonic force in isolated cardiac cells. IEEE Transactions on Biomedical Engineering 40 (1993) 1226–1232

    Article  Google Scholar 

  11. White, E., Boyett, M.R., Orchard, C.H.: The effects of mechanical loading and changes to length on single guinea-pig ventricular myocytes. J. Physiol. (1995) 93–107

    Google Scholar 

  12. Bluhm, W.F., McCulloch, A.D., Lew, W.Y.W.: Active force in rabbit ventricular myocytes. J. Biomechanics 28 (1995) 1119–1122

    Article  Google Scholar 

  13. Brandt, P.W., Colomo, F., Piroddi, N., Poggesi, C., Tesi, C.: Force regulation by Ca2+ in skinned single cardiac myocytes of frog. Biophys J 74 (1998) 1994–2004

    Article  Google Scholar 

  14. O’Rourke, B., Kass, D.A., Tomaselli, G.F., Kaab, S., Tunin, R., Marbán, E.: Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I experimental studies. Circ. Res 84(5) (1999) 562–570

    Google Scholar 

  15. Yasuda, S., Sugiura, S., Kobayakawa, N., Fjita, H., Yamashita, H., Katoh, K., Seaki, Y., Kaneko, H., Suda, Y., Nagai, R., Sugi, H.: A novel method to study contraction characteristics of a single cardiac myocyte using carbon fibers. Am. J. Physiol. 281 (2001) H1442–H1446

    Google Scholar 

  16. Irving, M., Goldman, Y.E.: Another step ahead for myosin. Nature 398 (1999) 463–465

    Article  Google Scholar 

  17. Kitamura, K., Tokunaga, M., Iwane, A.H., Yanagida, T.: A single myosin head moves along an actin filament with regular steps of 5.3 nanometeres. Nature 397 (1999) 129–134

    Article  Google Scholar 

  18. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darneell, J.: Molekulare Zellbiologie. Spektrum Akademischer Verlag, Heidelberg, Berlin (2001)

    Google Scholar 

  19. Allen, D., Kurihara, S.: The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J. Physiol. 327 (1982) 79–94

    Google Scholar 

  20. Nagashima, H., Asakura, S.: Studies on co-operative properties of tropomyosin-actin and tropomyosin-troponin-actin complexes by use of N-ethylmaleinide-treated and untreated species of myosin subfragment. J. Mol. Bio. 155 (1982) 409–428

    Article  Google Scholar 

  21. Tobacman, L.: Thin filament mediated regulation of cardiac contraction. Ann. Rev. Physiol. 58 (1996) 447–481

    Article  Google Scholar 

  22. Spudich, J.A.: TIMELINE: The myosin swinging cross-bridge model. Nature Reviews Molecular Cell Biology 2 (2001) 387–392

    Article  Google Scholar 

  23. Glänzel, K.: Kraftentwicklung im Sarkomer unter Berücksichtigung elektromechanischer Kopplung. Diploma Thesis, Institut für Biomedizinische Technik, Universität Karlsruhe (TH) (2002)

    Google Scholar 

  24. Rice, J.J., Winslow, R.L., Hunter, W.C.: Comparison of putative cooperative mechanisms in cardiac muscle: length dependence and dynamic responses. Am. J. Physiol. Circ. Heart. 276 (1999) H1734–H1754

    Google Scholar 

  25. Gordon, A., Regnier, M., Homsher, E.: Skeletal and cardiac muscle contractile activation: Tropomyosin “rocks and rolls”. News Physiol. Sci. 16 (2001) 49–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sachse, F.B., Glänzel, K., Seemann, G. (2003). Modeling of Electro-mechanical Coupling in Cardiac Myocytes: Feedback Mechanisms and Cooperativity. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2003. Lecture Notes in Computer Science, vol 2674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44883-7_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-44883-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40262-6

  • Online ISBN: 978-3-540-44883-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics