Advertisement

Motion Analysis of 3D Ultrasound Texture Patterns

  • Weichuan Yu
  • Ning Lin
  • Ping Yan
  • Kailasnath Purushothaman
  • Albert Sinusas
  • Karl Thiele
  • James S. Duncan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2674)

Abstract

We model the process of imaging soft tissues with a 3D ultrasound probe using a linear convolution model, and obtain analytical expressions of both the ultrasound image and its spectrum. We use this model to study the ultrasound decorrelation caused by tissue motion both in the spatial domain and spectral domain. Finally, we propose a spectral-feature-based algorithm to analyze tissue motion. The comparison with intensity-based algorithm shows promising results.

Keywords

Speckle Pattern Spectral Domain Speckle Tracking Texture Pattern Tissue Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shi, P., Sinusas, A., Constable, R., Ritman, E., Duncan, J.: Point-tracked quantitative analysis of left ventricular surface motion from 3-D image sequences. IEEE Trans. Medical Imaging 19(1) 2000 36–50CrossRefGoogle Scholar
  2. 2.
    D’hooge, J., Bijnens, B., Thoen, J., Van de Werf, F., Sutherland, G., Suetens, P.: Echocardiographic strain and strain-rate imaging: A new tool to study regional myocardial function. IEEE Trans. Medical Imaging 21(9) 2002 1022–1030CrossRefGoogle Scholar
  3. 3.
    Wagner, R., Smith, S., Sandrik, J., Lopez, H.: Statistics of speckle in ultrasound B-scans. IEEE Trans. Sonics and Ultrasonics 30(3) 1983 156–163Google Scholar
  4. 4.
    Meunier, J., Bertrand, M.: Ultrasonic texture motion analysis: Theory and simulation. IEEE Trans. Medical Imaging 14(2) 1995 293–300CrossRefGoogle Scholar
  5. 5.
    Bohs, L., Geiman, B., Anderson, M., Gebhart, S., Trahey, G.: Speckle tracking for multidimensional flow estimation. Ultrasonics 38 2000 369–375CrossRefGoogle Scholar
  6. 6.
    Meunier, J., Bertrand, M.: Echographic image mean gray level changes with tissue dynamics: A system-based model study. IEEE Trans. Biomedical Engineering 42(4) 1995 403–410CrossRefGoogle Scholar
  7. 7.
    Maurice, R., Bertrand, M.: Lagrangian speckle model and tissue-motion estimation ó theory. IEEE Trans. Medical Imaging 18(7) 1999 593–603CrossRefGoogle Scholar
  8. 8.
    Meunier, J.: Tissue motion assessment from 3d echographic speckle tracking. Phys. Med. Biol. 43 1998 1241–1254CrossRefGoogle Scholar
  9. 9.
    Konofagou, E., Varghese, T., Ophir, J., Alam, S.: Power spectral strain estimators in elastography. Ultrasound in Med. & Biol. 25(7) 1999 1115–1129CrossRefGoogle Scholar
  10. 10.
    Bashford, G.R., von Ramm, O.T.: Ultrasound three-dimensional velocity measurements by feature tracking. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 43(3) 1996 376–384CrossRefGoogle Scholar
  11. 11.
    Krueger, M., Pesavento, A., Ermert, H., Hiltawsky, K., Heuser, L., Rosenthal, H., Jensen, A.: Ultrasonic strain imaging of the female breast using phase root seeking and threedimensional “optical flow”. In: IEEE Ultrasonics Symposium. 1998 1757–1760Google Scholar
  12. 12.
    Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers 1995Google Scholar
  13. 13.
    Wagner, R., Insana, M., Smith, S.: Fundamental correlation lengths of coherent speckle in medical ultrasonic images. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 35(1) 1988 34–44CrossRefGoogle Scholar
  14. 14.
    Friemel, B., Bohs, L., Nightingale, K., Trahey, G.: Speckle decoorelation due to twodimensional flow gradients. IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 45(2) 1998 317–327CrossRefGoogle Scholar
  15. 15.
    Bilgen, M., Insana, M.: Error analysis in acoustic elastography. I. displacement estimation. Journal of the Acoustical Society of America 101(2) 1997 1139–1154CrossRefGoogle Scholar
  16. 16.
    Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Analysis and Machine Intelligence 12(1) 1990 55–73CrossRefGoogle Scholar
  17. 17.
    Yeung, F., Levinson, S., Fu, D., Parker, K.: Feature-adaptive motion tracking of ultrasound image sequences using a deformable mesh. IEEE Trans. Medical Imaging 17(6) 1998 945–956CrossRefGoogle Scholar
  18. 18.
    Heeger, D.J.: Optical flow using spatiotemporal filters. International Journal of Computer Vision 1(4) 1988 279–302CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Weichuan Yu
    • 1
  • Ning Lin
    • 2
  • Ping Yan
    • 3
  • Kailasnath Purushothaman
    • 1
    • 3
  • Albert Sinusas
    • 1
    • 4
  • Karl Thiele
    • 5
  • James S. Duncan
    • 1
    • 2
  1. 1.Department of Diagnostic RadiologyYale UniversityUSA
  2. 2.Department of Electrical EngineeringYale UniversityUSA
  3. 3.Department of Mechanical EngineeringYale UniversityUSA
  4. 4.Department of Internal MedicineYale UniversityUSA
  5. 5.Philips Medical SystemsAndover

Personalised recommendations