Advertisement

Evaluation and Comparison of Surface and Intensity Based Rigid Registration Methods for Thorax and Cardiac MR and PET Images

  • Timo Mäkelä
  • Mika Pollari
  • Jyrki Lötjönen
  • Nicoleta Pauna
  • Anthonin Reilhac
  • Patrick Clarysse
  • Isabelle E. Magnin
  • Toivo Katila
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2674)

Abstract

In this paper an evaluation and a comparison of surface and image intensity based (mutual information, normalized mutual information and correlation ratio) rigid registration methods for cardiac magnetic resonance and positron emission tomography images are presented. In both types of rigid image registration methods, PET transmission image was used as a linking mediator to register corresponding PET emission image to MR image coordinates. Also direct rigid registration of PET emission image to MR image coordinates was tested. Methods were evaluated with simulated and ten patient MR - PET images and with three optimization methods. Results indicated that NMI and CR methods with simplex optimization provided the most robust and accurate results.

Keywords

Positron Emission Tomography Root Mean Square Positron Emission Tomography Image Normalize Mutual Information Surface Base Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mäkelä, T., Clarysse, P., Sipilä, O., Pauna, N., Pham, Q., Katila, T., Magnin,.E.: A review of cardiac image registration methods. IEEE Trans. Med. Imaging, 21 2002 1011–1021.CrossRefGoogle Scholar
  2. 2.
    Mäkelä, T. J., Clarysse, P., Lötjönen, J., Sipilä, O., Lauerma, K., Hanninen, H., Pyokkimies, E.-P., Nenonen, J., Knuuti, J., Katila, T., and Magnin, I. E.: A new method for the registration of cardiac PET and MR images using deformable model based segmentation of the main thorax structures. In Niessen, W. and Viergever, M., editors, Lecture Notes in Computer Science 2208:MICCAI01, 2001 557–564.Google Scholar
  3. 3.
    Carrillo, A., Duerk, J., Lewin, J., Wilson, D.: Semiautomatic 3-D image registration as applied to interventional MRI liver cancer treatment. IEEE Trans. Med. Imaging 19 2001 175–185.CrossRefGoogle Scholar
  4. 4.
    Slomka P. J., Dey D., Przetak C., and Baum R.: Automated nonlinear 3-D registration of 18-F FDG wholebody PET with thoracic CT, J. Nucl. Med., 42:5 2001Google Scholar
  5. 5.
    Zhenghong, L., Berridge, M.S.: PET imaging-based evaluation of aerosol drugs and their delivery devices: nasal and pulmonary studies. IEEE Trans. Med. Imaging 21 2002 1324–1331.CrossRefGoogle Scholar
  6. 6.
    Roche A. and Pennec X. and Malandain G. and Ayache N.: Rigid Registration of 3-D Ultrasound With MR Images: A New Approach Combining Intensity and Gradient Information. IEEE Trans. Med. Imaging 20 2001 1038–1049.CrossRefGoogle Scholar
  7. 7.
    Lötjönen J., Reissman P.-J., Magnin I.E. and Katila T.: Model extraction from magnetic resonance volume data using the deformable pyramid. Medical Image Analysis, 4 1999 387–406.CrossRefGoogle Scholar
  8. 8.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P.: Numerical Recipes in C: The art of scientific computing 2nd Edition. Cambridge Univ. Press, Cambridge, 1992.Google Scholar
  9. 9.
    Pauna N., Croisille P., Costes N., Reilhac A., Mäkelä T., Onuc C., Janier M., Clarysse P.: A strategy to quantitatively evaluate MRI/PET cardiac registration methods using a Monte Carlo simulator. Accepted to FIMH2003.Google Scholar
  10. 10.
    Reilhac A., Gregoire M.-C., Costes N., Lavanne, F., Pierre C., Diou A., and Pujol J.-F.: A PET Monte Carlo simulator from numerical phantom: Validation against the EXACT ECAT HR+ scanner. In Proc. IEEE Nuclear Sciences Symposium, vol. 3 1999 1527–1531.Google Scholar
  11. 11.
    Reilhac A., Lartizien C., Costes N., Sans S., Comtat C., Evans A.: Accounting for singes rates related phenomena in PET Monte-Carlo based simulations. In IEEE Nuclear Sciences Symposium, 2002, in press.Google Scholar
  12. 12.
    Hartiala, J. and Knuuti, J.: (1995). Imaging of heart by MRI and PET. Ann. Med., 27 1995 35–45.CrossRefGoogle Scholar
  13. 13.
    Lauerma K., Niemi P., Hanninen H., Janatuinen T., Voipio-Pulkki L., Knuuti J., Toivonen L., Mäkelä T., Makijarvi M. A., Aronen H. J.: Multimodality MR imaging assessment of myocardial viability: combination of first-pass and late contrast enhancement to wall motion dynamics and comparison with FDG-PET. Radiology, 217 2000 729–736.Google Scholar
  14. 14.
    Borgefors G.: Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Trans. Pattern Anal. Machine Intell., 6 1988 849–865.CrossRefGoogle Scholar
  15. 15.
    Maes F., Collignon A., Vandermeulen D., Marchal G. and Suetens P.: Multimodality Image Registration by Maximization of Mutual Information. IEEE Trans. Med. Imaging 16:2 1997 187–198.CrossRefGoogle Scholar
  16. 16.
    Holden M., Hill D., Denton E., Jarosz J., Cox T., Rohlng T., Goodey J., Hawkes D.: Voxel similarity measures for 3-D serial MR brain image registration. IEEE Trans. Med. Imaging 19:2 2000 94–102.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Timo Mäkelä
    • 1
    • 2
    • 7
  • Mika Pollari
    • 1
  • Jyrki Lötjönen
    • 3
  • Nicoleta Pauna
    • 2
  • Anthonin Reilhac
    • 4
    • 5
    • 6
  • Patrick Clarysse
    • 2
  • Isabelle E. Magnin
    • 2
  • Toivo Katila
    • 1
    • 7
  1. 1.Laboratory of Biomedical EngineeringHelsinki University of TechnologyHUTFinland
  2. 2.CREATIS, INSAVilleurbanne CedexFrance
  3. 3.VTT Information TechnologyTampereFinland
  4. 4.Centre d’Exploration et de Recherche Médicales par Emission de PositonsNeurological HospitalLyonFrance
  5. 5.McGill University/McConnell Brain Imaging CentreMontrealCanada
  6. 6.Montreal Neurological Institute WB-315MontrealCanada
  7. 7.BioMag LaboratoryHelsinki University Central HospitalFinland

Personalised recommendations