Advertisement

Automatic Registration of MR First-Pass Myocardial Perfusion Images

  • Luc Bracoud
  • Fabrice Vincent
  • Chahin Pachai
  • Emmanuelle Canet
  • Pierre Croisille
  • Didier Revel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2674)

Abstract

Magnetic resonance perfusion imaging has become a technique of choice in the evaluation of patients with suspected coronary artery disease (CAD). In order to improve the quantification of perfusion parameters (such as signal intensity amplitude and upslope), an automatic registration technique is proposed. The results are compared to manually registered perfusion sequences. Perfusion maps computed from original and registered data sets are also compared. Automatic registration can be efficiently used as a post-processing technique to improve further qualitative and quantitative evaluation strategies.

Keywords

Mutual Information Perfusion Parameter Registration Algorithm Registration Technique Dynamic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schwitter J., Nanz D., Kneifel S., Bertschinger K., Buchi M., Knusel P. R., Marincek B., Luscher T. F., von Schulthess G. K.: Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103(18) 2001 2230–2235Google Scholar
  2. 2.
    Bertschinger KM., Nanz D., Buechi M., Luescher TF., Marincek B., von Schulthess GK., Schwitter J.: Magnetic resonance myocardial first-pass perfusion imaging: parameter optimization for signal response and cardiac coverage. Magn Reson Imaging 14(5) 2001Google Scholar
  3. 3.
    Al-Saadi N., Nagel E., Gross M., Bornstedt A., Schnackenburg B., Klein C., Klimek W., Oswald H., Fleck E.: Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101(12) 2000 1379–1383Google Scholar
  4. 4.
    Plein S., Ridgway J. P., Jones T. R., Bloomer T. N., Sivananthan MU.: Coronary artery disease: assessment with a comprehensive MR imaging protocol—initial results. Radiology 225(1) 2002 300–307CrossRefGoogle Scholar
  5. 5.
    ITK, National Library of Medicine Insight Segmentation and Registration Toolkit http://www.itk.org
  6. 6.
    Wells W. M. 3rd, Viola P., Atsumi H., Nakajima S., Kikinis R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1) 1996 35–51.CrossRefGoogle Scholar
  7. 7.
    Viola P.: Alignment by Maximization of Mutual Information. PhD thesis, Massachusetts Institute of Technology 1995Google Scholar
  8. 8.
    Viola P. and Wells III W.: Alignment by Maximization of Mutual Information. International Journal of Computer Vision 24(2) 1997 137–154CrossRefGoogle Scholar
  9. 9.
    Bidaut L. M., Vallee J. P.: Automated registration of dynamic MR images for the quantification of myocardial perfusion. J. Magn. Reson. Imaging 13(4) 2001 648–655CrossRefGoogle Scholar
  10. 10.
    Delzescaux T., Frouin F., De Cesare A., Philipp-Foliguet S., Zeboudj R., Janier M., Todd-Pokropek A., and Herment A.: Adaptive and self-evaluating registration method for myocardial perfusion assessment. Magma 13 2001 28–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Luc Bracoud
    • 1
    • 2
  • Fabrice Vincent
    • 1
  • Chahin Pachai
    • 1
  • Emmanuelle Canet
    • 2
  • Pierre Croisille
    • 2
  • Didier Revel
    • 2
  1. 1.THERALYS S.A.LyonFrance
  2. 2.CREATIS, INSAVilleurbanne CedexFrance

Personalised recommendations