Advertisement

A Strategy to Quantitatively Evaluate MRI/PET Cardiac Rigid Registration Methods Using a Monte Carlo Simulator

  • Nicoleta Pauna
  • Pierre Croisille
  • Nicolas Costes
  • Anthonin Reilhac
  • Timo Mäkelä
  • Onuc Cozar
  • Marc Janier
  • Patrick Clarysse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2674)

Abstract

The goal of this work is to present a strategy to validate cardiac MRI/PET registration methods. The strategy relies on a MRI/PET image reference data set including a computer generated PET data set of the thorax and its structures. This data set was produced using a Monte Carlo simulator from segmented T1-weighted MRI thorax data. From the reference data set as a gold standard, test transformations are randomly generated and used to quantify registration accuracy. The validation approach has been applied to our own rigid registration method with three different similarity measures: Correlation Ratio, Correlation Coefficient and Mutual Information. In this study, we observed that the Correlation Ratio gave better results both for thorax and heart image registration.

Keywords

Positron Emission Tomography Mutual Information Right Ventricle Positron Emission Tomography Image Registration Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Grova, A. Biraben, J.-M. Scarabin, P. Jannin, I. Buvat, H. Benali, and B. Gibaud. A methodology to validate MRI/SPECT registration methods using realistic simulated SPECT data. In W.J. Niessen and M.A. Viergever, editors, Lecture Notes in Computer Science 2208: MICCAI01, pages 275–282, 2001.Google Scholar
  2. 2.
    J. Hartiala and J. Knuuti. Imaging of heart by MRI and PET. Ann. Med., 27:35–45, 1995.CrossRefGoogle Scholar
  3. 3.
    D.L.G. Hill and D.J. Hawkes. Handbook of Medical Imaging: Processing and Analysis, chapter Across-modality registration using intensity-based cost functions, pages 537–553. Academic Press, 2000.Google Scholar
  4. 4.
    M. Jenkinson. Measuring transformation error by RMS deviation. Technical Report 3741, 1999.Google Scholar
  5. 5.
    M. Jenkinson and S. Smith. A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5:143–156, 2001.CrossRefGoogle Scholar
  6. 6.
    J. B. A. Maintz and M. A. Viergever. A survey of medical image registration. Medical Image Analysis, 2(1):1–36, 1998.CrossRefGoogle Scholar
  7. 7.
    C. Nikou, F. Heitz, and J.P. Armspach. Robust voxel similarity metrics for the registration of dissimilar single and multi-modal images. Pattern Recognition, 32:1351–1368, 1999.CrossRefGoogle Scholar
  8. 8.
    S. Pallotta, M. C. Gilardi, V. Bettinardi, G. Rizzo, C. Landoni, G. Striano, R. Masi, and F. Fazio. Application of a surface matching image registration technique to the correlation of cardiac studies in positron emission tomography by transmission images. Physics in Medicine and Biology, 40:1695–1708, 1995.CrossRefGoogle Scholar
  9. 9.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The art of scientific computing 2nd Edition. Cambridge Univ. Press, Cambridge, 1992.Google Scholar
  10. 10.
    A. Reilhac, M. C. Gregoire, N. Costes, F. Lavenne, C. Pierre, A. Diou, and J.-F. Pujol. A PET Monte Carlo simulator from numerical phantom: Validation against the EXACT ECAT HR+ scanner. In Proc. IEEE Nuclear Sciences Symposium, Seattle, Washington, USA, 3:1527–1531, 1999.Google Scholar
  11. 11.
    A. Reilhac, C. Lartizien, N. Costes, S. Sans, C. Comtat, and A. Evans. Accounting for singles rates related phenomena in PET Monte Carlo based simulations. In Proc. IEEE Nuclear Sciences Symposium and Medical Imaging Conference, Norfolk, 2002, accepted.Google Scholar
  12. 12.
    A. Roche, G. Malandain, X. Pennec, and N. Ayache. Multimodal image registration by maximizaton of the correlation ratio. Research Report 3378, INRIA, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Nicoleta Pauna
    • 1
    • 5
  • Pierre Croisille
    • 1
  • Nicolas Costes
    • 2
  • Anthonin Reilhac
    • 2
    • 3
  • Timo Mäkelä
    • 1
    • 4
  • Onuc Cozar
    • 5
  • Marc Janier
    • 1
    • 2
  • Patrick Clarysse
    • 1
  1. 1.CREATIS, INSAVilleurbanne CedexFrance
  2. 2.CERMEPNeurological HospitalLyonFrance
  3. 3.Montreal Neurological InstituteMcGill University/McConnel Brain Imaging CentreMontrealCanada
  4. 4.Laboratory of Biomedical EngeenieringHelsinki University of TechnologyFinland
  5. 5.Department of PhysicsBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations