Advertisement

Modeling and Tracking of the Cardiac Left Ventricular Motion by a State Space Harmonic Model in MRI Sequence

  • Mohammed Oumsis
  • Quoc-Cuong Pham
  • Abdelaziz D. Sdigui
  • Bruno Neyran
  • Isabelle E. Magnin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2674)

Abstract

We present a new method for modeling the left ventricular motion of the heart from a magnetic resonance imaging (MRI) sequence. We propose to model the 3D time-space trajectory of the points of the endocardial regions of the left ventricle (LV) using an harmonic model of movement, which is linear and describes the dynamics of the left ventricle throughout the cardiac cycle. This new state space model is based on the assumption of quasi-periodicity of the cardiac cycle. We describe our method to obtain the state canonical vector and the corresponding state equations of the harmonic state model (HSM). A Kalman filter is used on this harmonic state model as an estimation tool of the filtered trajectory of the LV. It allows to obtain a robust estimation of the state vector which contains the measured parameter and its derivatives. Thus, a robust estimation of the instantaneous velocity of the LV region is computed using the whole information of the sequence included in the harmonic model. The model is validated on real cardiac sequences. We detail how to get the 3D timespace trajectories of the LV edge points. The results obtained are particularly interesting because they demonstrate the capability of our method to understand and discriminate normal cases from pathological cases.

Keywords

Left Ventricle State Vector Kalman Filter Cardiac Cycle Magnetic Resonance Imaging Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tennant R., Wiggers C.J., The effect of coronary occlusion on myocardial contraction, Am. J. Physiol., Vol. 112, pp,351–361, 1935.Google Scholar
  2. 2.
    Alejandro F. Frangi, Wiro J. Niessen, Max A. Viergever, Three-dimensional modeling for functional analysis of cardiac images: a review, IEEE Transactions on Medical Imaging, vol. 20, no 1, pp. 2–25, Jan. 2001.CrossRefGoogle Scholar
  3. 3.
    Magnin I.E., Analyse et modélisation 3D du comportement dynamique du cœur en imagerie multimodalité, Revue de l’ACOMEN, vol. 5, no 2, pp. 191–196, 1999.Google Scholar
  4. 4.
    Clarysse P., Han M., Croisille P., Magnin I.E., Exploratory analysis of the spatio-temporal deformation of the myocardium during systole from tagged MRI, IEEE Transactions on Medical Imaging, vol. 49, no 11, pp. 1328–1339, Nov. 2002.Google Scholar
  5. 5.
    Declerck J., Etude de la dynamique cardiaque par analyse d’images tridimensionnelles, Thèse de doctorat, Université de Nice Sophia-Antipolis, 1997, 253p.Google Scholar
  6. 6.
    Zhu Y.D., Drangova M., Pelc N.J., Fourier tracking of myocardial motion using Cine-PC velocity data, Magnetic Resonance in Medicine, 1996 35:471–480.Google Scholar
  7. 7.
    Radix J.C., Filtrage et lissage statistiques optimaux linéaires, Cepadues-Editiond 1984.Google Scholar
  8. 8.
    Kalman R.E., Bucy R.S., New results in linear filetring and prediction theory, transactions, ASME, J. Bas. Eng., 83(D), pp. 95–108, 1961.MathSciNetGoogle Scholar
  9. 9.
    Oumsis M., Sdigui A.D., Neyran B., Magnin I.E., Modélisation et suivi par modèle d’état harmonique du mouvement ventriculaire gauche du cœur en Imagerie par résonance Magnétique, Traitement du Signal, Vol. 17, no 5/6, pp. 501–516, 2000.zbMATHGoogle Scholar
  10. 10.
    Meyer F.G., Constable R.T., Sinusas A.J, Duncan J.S., Tracking Myocardial Deformation Using Phase Contrast MR Velocity Fields: A Stochastic Approach, IEEE Transactions on Medical Imaging, Vol. 15, no 4, pp. 453–465, 1996.CrossRefGoogle Scholar
  11. 11.
    Nastar C., Modèles physiques déformables et modes vibratoires pour l’analyse du mouvement non-rigide dans les images multidimensionnelles, Thèse de doctorat, Ecole Nationale des Ponts et des Chaussées, 181p, 1994.Google Scholar
  12. 12.
    Zhu D., Drangova M., Pelc N.J., Estimation of deformation gradient and strain from Cine-PC velocity data, IEEE Transactions on Medical Imaging, vol. 16, no 6, pp. 840–851, 1997.Google Scholar
  13. 13.
    McEachen J., Nehorai A., Duncan J., A recursive filter for temporal analysis of cardiac motion, IEEE workshop on Biomedical Image analysis, pp. 124–133, 1994.Google Scholar
  14. 14.
    Todd R. C., Rath K., A. Sinusas, J. Gore, Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging, Magnetic Resonance in Medicine, vol. 32, pp. 33–42, 1994.CrossRefGoogle Scholar
  15. 15.
    Grevera G. j., Udupa K. J., Shape-based interpolation of multidimensional grey-level images, IEEE Transactions on Medical Imaging, vol. 15, no 6, pp. 881–891, 1996.CrossRefGoogle Scholar
  16. 16.
    Song M., Leahy R. M., Computation of 3D velocity fields from 3D cine CT images of a human heart, IEEE Transactions on Medical Imaging., vol. 10, pp. 295–306, Sept. 1991.CrossRefGoogle Scholar
  17. 17.
    Gorce J.-M., Friboulet D., Magnin I. E., Estimation of three-dimensional cardiac velocity fields: Assessment of a differential method and application to three-dimensional CT data, Medical Image Analysis, Vol. 1, n°3, pp. 245–261, 1997.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Mohammed Oumsis
    • 1
    • 2
  • Quoc-Cuong Pham
    • 2
  • Abdelaziz D. Sdigui
    • 1
  • Bruno Neyran
    • 2
  • Isabelle E. Magnin
    • 2
  1. 1.Laboratory of Computer Sciences, ENSIASMohammed V UniversitySouissi RabatMorocco
  2. 2.CREATIS, INSAVilleurbanne CedexFrance

Personalised recommendations