Skip to main content

The Importance of Boundary Conditions in Quantum Mechanics

  • Chapter
  • First Online:
Irreversible Quantum Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 622))

Abstract

We discuss the role of boundary conditions in determining the physical content of the solutions of the Schrödinger equation. We study the standing-wave, the “in,” the “out,” and the purely outgoing boundary conditions. As well, we rephrase Feynman’s +iε prescription as a time-asymmetric, causal boundary condition, and discuss the connection of Feynman’s +iε prescription with the arrow of time of Quantum Electrodynamics. A parallel of this arrow of time with that of Classical Electrodynamics is made. We conclude that, in general, the time evolution of a closed quantum system has indeed an arrow of time built into the propagators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. de la Madrid: Quantum Mechanics in Rigged Hilbert Space Language, PhD Thesis, Universidad de Valladolid, Valladolid (2001). Available at http://www.isi.it/~rafa/.

  2. E. Brändas, M. Rittby, N. Elander: J. Math. Phys. 26, 2648 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. E. Engdahl, E. Brändas, M. Rittby, N. Elander: Phys. Rev. A 37, 3777 (1988).

    ADS  Google Scholar 

  4. G. Gamow: Z. Phys. 51, 204 (1928).

    Article  ADS  Google Scholar 

  5. A. F. J. Siegert: Phys. Rev. 56, 750 (1939).

    Article  ADS  Google Scholar 

  6. E. Hernńdez, A. Mondragón: Phys. Rev. C 29, 722 (1984); A. Mondragón, E. Hernández, J. M. Velázquez Arcos: Ann. Phys. 48, 503 (1991).

    ADS  Google Scholar 

  7. M. Baldo, L. S. Ferreira, L. Streit: Phys. Rev. C 36, 1743 (1987); L. S. Ferreira, E. Maglione, R. J. Liotta: Phys. Rev. Lett. 78, 1640 (1997).

    ADS  Google Scholar 

  8. R. de la Madrid, M. Gadella: Am. J. Phys. 70, 626 (2002); quant-ph/0201091.

    Article  ADS  Google Scholar 

  9. A. Bohm, M. Gadella (eds.): Dirac Kets, Gamow Vectors and Gelfand Triplets. In Lecture Notes in Physics, LNP 348 (Springer, Berlin, Heidelberg, 1989)

    Google Scholar 

  10. L. I. Schiff: Quantum Mechanics (McGraw-Hill, New York 1968).

    Google Scholar 

  11. R. P. Feynman: Quantum Electrodynamics (Benjamin, New York 1961).

    Google Scholar 

  12. N. Dunford, J. Schwartz: Linear operators, vol. II (Interscience Publishers, New York 1963).

    MATH  Google Scholar 

  13. R. de la Madrid: J. Phys. A: Math. Gen. 35, 319 (2002); quant-ph/0110165.

    Article  MATH  ADS  Google Scholar 

  14. R. de la Madrid: Chaos, Solitons & Fractals 12, 2689 (2001); quant-ph/0107096.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. R. de la Madrid, A. Bohm, M. Gadella: Fortsch. Phys. 50, 185 (2002); quant-ph/0109154.

    Article  MATH  ADS  Google Scholar 

  16. R. Ritz: Physikalische Zeitschrift 9, 903 (1908); ibid. 10, 224 (1909); R. Ritz, A. Einstein: Physikalische Zeitschrift 10, 323 (1909).

    Google Scholar 

  17. R. Peierls: Surprises in Theoretical Physics (Princeton University Press, Princeton 1979).

    Google Scholar 

  18. R. Penrose: ‘Singularities and time-asymmetry’. In General Relativity: An Einstein Centenary Survey, ed. by S. W. Hawking, W. Israel (Cambridge University Press, Cambridge 1979), pp. 581–638.

    Google Scholar 

  19. M. Gell-Mann, J. B. Hartle: ‘Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology’. In [11], pp. 311–345.

    Google Scholar 

  20. J. Preskill: Physics 229: Advanced Mathematical Methods of Physics— Quantum Computation and Information (California Institute of Technology, Pasadena, CA, 1998). Available at http://www.theory.caltech.edu/people/preskill/ph229/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de la Madrid, R. (2003). The Importance of Boundary Conditions in Quantum Mechanics. In: Benatti, F., Floreanini, R. (eds) Irreversible Quantum Dynamics. Lecture Notes in Physics, vol 622. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44874-8_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-44874-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40223-7

  • Online ISBN: 978-3-540-44874-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics