Skip to main content

Intermittent burst synchronization in neural networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2686))

Abstract

The dynamics of a network built out of excitatory and inhibitory neurons is investigated in terms of burst synchronization. The inherent activity of the neurons is controlled by a set of three delay differential equations. We take into account time delays due to propagational and synaptical delays, nonlinearities due to the synaptic transmission process and the spike generation. Intermittent synchronized network activity is observed. A mechanism for this self organized activity is proposed and bases on the occurrence and propagation of bursting activity. The results are discussed in the context of epilepsy research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Connors, B. W. (1984). Initiation of synchronized neuronal bursting in neocortex. Nature, 310:685–687.

    Article  Google Scholar 

  2. Draguhn, A., Traub, R. D., Schmitz, D., and Jefferys, J. G. R. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394:189–192.

    Article  Google Scholar 

  3. Ernst, U., Pawelzik, K., and Geisel, T. (1998). Delay-induced multistable synchronization of biological oscillators. Physical Review E, 57:2150–2162.

    Article  MathSciNet  Google Scholar 

  4. Fisahn, A., Pike, F. G., Buhl, E. H., and Paulsen, O. (1998). Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature, 394:186–189.

    Article  Google Scholar 

  5. FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1:445–466.

    Article  Google Scholar 

  6. Giannakopoulos, F., Bihler, U., Hauptmann, C., and Luhmann, H. J. (2001). Epileptiform activity in a neocortical network: a mathematical model. Biological Cybernetics, 85:257–268.

    Article  MATH  Google Scholar 

  7. Hauptmann, C. (2000). Epileptiform activity in differential equation models of neuronal networks. PhD thesis, University of Cologne ISBN 3-8265-7974-7, Shaker-Verlag Aachen, Germany.

    Google Scholar 

  8. Karbowski, J. and Kopell, N. (2000). Multispikes and synchronization in a large neural network with temporal delays. Neural Computation, 12:1573–1606.

    Article  Google Scholar 

  9. Knott, T. (2001). Population synchronization during propagation of epileptiform activity in organotypic hippocampal slices-a microelectrode array study. Ph. D. thesis, Fakultät für Biologie der Eberhard Karls Universität Tübingen, Der Andere Verlag, Osnabrück.

    Google Scholar 

  10. Kuramoto, Y. (1984). Chemical oscillations, waves and turbulence. Springer, Berlin.

    MATH  Google Scholar 

  11. Lewis, T. J. and Rinzel, J. (2000). Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Network: Computational Neural Systems, 11:299–320.

    Article  Google Scholar 

  12. McCormick, D. A. and Contreras, D. (2001). On the cellular and network bases of epileptic seizures. Annual Review of Physiology, 63:815–846.

    Article  Google Scholar 

  13. Special issues on Synchronization (2000). International Journal of Bifurcation and Chaos, 10(10 & 11).

    Google Scholar 

  14. Pasemann, F. (1999). Synchronized chaos and other coherent states for two coupled neurons. Physica D, 128:236–249.

    Article  MATH  Google Scholar 

  15. Pinsky, P. F. and Rinzel, J. (1995). Synchrony measures for biological neural networks. Biological Cybernetics, 73:129–137.

    Article  MATH  Google Scholar 

  16. Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol., 55:349–374.

    Article  Google Scholar 

  17. Strogatz, S. and Mirollo, R. (1991). Stability of incoherence in a population of coupled oscillators. J. Stat. Phys., 63:613–636.

    Article  MathSciNet  Google Scholar 

  18. Tass, P. A. (1999). Phase Resetting in Medicine and Biology. Springer, Berlin.

    MATH  Google Scholar 

  19. Varona, P., Torres, J. J., Abarbanel, H. D., Rabinovich, M. I., and Elson, R. C. (2001). Dynamics ot two electrically coupled chaotic neurons: Experimental observations and model analysis. Biological Cybernetics, 84:91–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hauptmann, C., Gail, A., Giannakopoulos, F. (2003). Intermittent burst synchronization in neural networks. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-44868-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40210-7

  • Online ISBN: 978-3-540-44868-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics