Skip to main content

Life-long learning: consolidation of novel events into dynamic memory representations

  • Conference paper
  • First Online:
Book cover Computational Methods in Neural Modeling (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2686))

Included in the following conference series:

  • 997 Accesses

Abstract

Life-long learning paradigm accentuates on the continuity of the on-line process of integrating novel information into the existing representational structures, and recategorization or update of these structures. This paper brings up the hypothesis, that memory consolidation is a biological mechanism that resembles the features of life-long learning paradigm. A global model for memory consolidation is proposed on a functional level, after reviewing the empirical studies on the hippocampal formation and neocortex. Instead of considering memory as storage, the proposed model reconsiders ]the memory process as recategorization. Distinct experiences that share a common clement can be consolidated in the memory in a way such that they arc substrata for a new solution. The model is applied to an autobiographical robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barakova E.I. and U. R. Zimmcr, Dynamical Situation and Trajectory Discrimination of Raw Range Measurements, AISTA, Canberra, Feb. 2000.

    Google Scholar 

  2. Cohen NJ and Eichenbaum H, Memory, amnesia and the hippocampal system. Cambridge, MA: MIT Press, 1995.

    Google Scholar 

  3. Conway, M. A., & Bekerian, D. A. (1987). Organization in autobiographical memory. Memory & Cognition, 15,119–132.

    Google Scholar 

  4. Pavlides C, Greenstein YJ, Grudman M, Winson J., Long-term potentiation in the dentate gyms is induced preferentially on the positive phase of theta-rhythm. Brain Res 1988, 439:383–387.

    Article  Google Scholar 

  5. Izquierdo I, Medina JH, Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol. Learning and Memory 1997, 68:285–316.

    Article  Google Scholar 

  6. Frizke, B. (1995). A growing neural gas network learns topologies. Advances in Neural Information Processing Systems 7. MIT Press, Cambridge MA.

    Google Scholar 

  7. Fuster, J.M. Memory in the Cerebral Cortex. MIT Press, 1994.

    Google Scholar 

  8. Kali S, Dayan P. 2000. Hippocampally-dependent consolidation in a hierarchical model of neocortex. NIPS 2000:24–30.

    Google Scholar 

  9. Lavenex P. and David G. Amaral, Hippocampal-Neocortical Interaction: A Hierarchy of Associativity, Hippocampus 10:42–430 (2000).

    Article  Google Scholar 

  10. Martinetz, T., & Schulten, K. (1991). A neural-gas network learns topologies. In T. Ko-honen at al. (Eds.), (pp. 397–402). Proc. of ICANN, Amsterdam, Netherlands.

    Google Scholar 

  11. McClelland JL, McNaughton, B.L., O’Reilly, R.C. Why there are complementary learning systems in the hippocampus and neocortex. Psychol. Rev. 1995, 102, 419–457

    Article  Google Scholar 

  12. Marr D: Simple memory: a theory of archicortex. Philos Trans R Soc Lond B 1971, 262:23–81.

    Article  Google Scholar 

  13. McClelland JL and Goddard, NH,1997. Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus, 6:654–665.

    Google Scholar 

  14. Miller, R. Cortico-hippocampal interplay: Self-Organized, Phase-locked loops for Indexing Memory, Psychobiology, Vol. 17(2), 115–128, 1989.

    Google Scholar 

  15. O’Keefe, J. and Recce M., 1993, Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3:317–330.

    Google Scholar 

  16. Squire, L. R. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99:195–231, 1992.

    Article  Google Scholar 

  17. Sutherland, G.R. and McNaughton, B. (2000) Memory trace reactivation in the hippocampal and neocortical neuronal ensembles. Curr. Opin. Neurobiol. 10, 180–186

    Article  Google Scholar 

  18. Swanson, L.V., Kohler, C. and Bjorklund A. The limbic region: I:The septohippocampal system. In A. Bjorklund, T. Hokfeld, and L.W. Swanson, edt. Handbook of chemical neu-roanathomy, Vol. 5, pages 125–277. Elsevier, 1987.

    Google Scholar 

  19. Rubin, D. C. (Ed.). (1996). Remembering our past: Studies in autobiographical memory. New York: Cambridge University Press.

    Google Scholar 

  20. Thrun, S.B., and T. M. Mitchell. Integrating inductive neural network learning and explanation-based learning. Tn Proceedings ofIJCAI-93, Chamberry, France, 1993.

    Google Scholar 

  21. Wiener, S.I., V. Korshunov, R. Garcia, and A. Berthoz, 1995. Internal, sibstratial and landmark que control of hippocampal CA1 place cell activity. European Journal of Neuro-science, 7:2206–2219, 1995

    Article  Google Scholar 

  22. Yamaguchi, Y., 2003. A Theory of Hippocampal Memory Basedon Theta Phase Precession Biological Cybernetics, Tn press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barakova, E.I., Lourens, T., Yamaguchi, Y. (2003). Life-long learning: consolidation of novel events into dynamic memory representations. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-44868-3_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40210-7

  • Online ISBN: 978-3-540-44868-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics