Skip to main content

Interacting Modalities through Functional Brain Modeling

  • Conference paper
  • First Online:
Book cover Computational Methods in Neural Modeling (IWANN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2686))

Included in the following conference series:

Abstract

This paper proposes a concept for modeling modalities and understanding the interaction between modalities through functional brain modeling (FBM). FBM proves to be a powerful method for functional behavior prediction of a group of neuronal cells with equivalent functional behavior. An example of interacting groups of neuronal cells, utilizing FBM, in early vision is given. A broad setup of functional behavior and interaction between different groups of cells in early vision has similar conceptual properties as cells that process other sensory information or multi modal sensory information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Amaral and J. L. Price. Amygdalo-cortical projections in the monkey. J. Comp. Neurol., 230:465–496, 1984.

    Article  Google Scholar 

  2. S. T. Carmichale and J. L. Price. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol., 363:615–641, 1996.

    Article  Google Scholar 

  3. J. P. Ewert, H. Buxbaum-Conradi, F. Dreisvogt, M. Glagow, C. Merkel-Harff, A. Röttingen, E. Schürg-Pfeiffer, and W. W. Schwippert. Neural modulation of visuomotor functions underlying prey-catching behaviour in anurans: perception, attention, motor performance, learning. Comparative Biochemistry and Physiology, A 128(3):417–461, 2001.

    Google Scholar 

  4. F. Heitger, L. Rosenthaler, R. von der Heydt, E. Peterhans, and O. Kübler. Simulation of neural contour mechanisms: from simple to end-stopped cells. Vision Research, 32(5):963–981, 1992.

    Article  Google Scholar 

  5. D. Hubel and T. Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. Journal of Physiology, London, 160:106–154, 1962.

    Google Scholar 

  6. D. H. Hubel. Eye, Brain, and Vision. Scientific American Library, New York, 1988.

    Google Scholar 

  7. E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of neural science. McGraw Hill, fourth edition, 2000.

    Google Scholar 

  8. E. Kobatake and K. Tanaka. Neuronal selectivities to complex object features in the ventral visual pathway of macaque cerebral cortex. Journal of Neurophysiology, 70:856–867, 1994.

    Google Scholar 

  9. J. E. LeDoux. Handbook of Physiology, volume 5, part 1, chapter 1, Emotion, pages 419–459. American Physiological Society, 1987.

    Google Scholar 

  10. J. E. LeDoux. The emotional brain: mysterious underpinnings of emotional life. Simon & Schuster, New York, 1996.

    Google Scholar 

  11. T. Lourens. A Biologically Plausible Model for Corner-based Object Recognition from Color Images. Shaker Publishing B.V., Maastricht, The Netherlands, March 1998.

    MATH  Google Scholar 

  12. T. Lourens, H. G. Okuno, and H. Kitano. Detection of oriented repetitive alternating patterns in color images-a computational model of monkey grating cells. In J. Mira, editor, Proceedings of the International Workshop on Artificial Neural Networks, IWANN 2001, volume 1676, Part I of Lecture Notes in Computer Science, pages 95–107, Granada, Spain, June 2001. Springer-Verlag.

    Google Scholar 

  13. J. S. Morris, A. Ohman, and R. J. Dolan. A subcortical pathway to the right amygdala mediating “unseen” fear. PNAS, 96(4):1680–1685, 1999.

    Article  Google Scholar 

  14. E. Peterhans. Cerebral Cortex, volume 12, chapter 8, Functional Organization of Area V2 in the Awake Monkey, pages 335–357. Plenum Press, New York, 1997.

    Google Scholar 

  15. A. Pitkänen, M. Pikkarainen, N. Nurminen, and A. Ylinen. Reciprocal connections between the amygdale and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat: a review. Ann.s New York Academy of Sciences, 911:369–391, 2000.

    Article  Google Scholar 

  16. I. A. Shevelev, N. A. Lazareva, B. V. Novikova, A. S. Tikhomirov, and G. A. Sharaev. Double orientation tuning in the cat visual cortex units. Neuroscience, 61(4):965–973, 1994.

    Article  Google Scholar 

  17. I. A. Shevelev, R. V. Novikova, N. A. Lazareva, A. S. Tikhomirov, and G. A. Sharaev. Sensitivity to cross-like figures in the cat striate neurons. Neuroscience, 69(1):51–57, 1995.

    Article  Google Scholar 

  18. L. R. Squire, F. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer, and M. J. Zigmond, editors. Fundamental Neuroscience. Academic Press, second edition, 2002.

    Google Scholar 

  19. R. von der Heydt, E. Peterhans, and M. R. Dürsteler. Grating cells in monkey visual cortex: Coding texture? Visual Cortex. In B. Blum, editor, Channels in the visual nervous system: neurophysiology, psychophysics and models, pages 53–73, London, 1991. Freund Publishing House Ltd.

    Google Scholar 

  20. R. von der Heydt, E. Peterhans, and M. R. Dürsteler. Periodic-Pattern-selective Cells in Monkey Visual Cortex. The Journal of Neuroscience, 12(4):1416–1434, April 1992.

    Google Scholar 

  21. R. P. Würtz and T. Lourens. Corner detection in color images through a multiscale combination of end-stopped cortical cells. Image and Vision Computing, 18(6–7):531–541, April 2000.

    Article  Google Scholar 

  22. M. P. Young, J.W. Scannell, G. Burns, and C. Blakemore. Analysis of connectivity: neural systems in the cerebral cortex. Reviews in the Neurosciences, 5:227–250, 1994.

    MATH  Google Scholar 

  23. S. Zeki. A Vision of the Brain. Blackwell science Ltd., London, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lourens, T., Barakova, E., Tsujino, H. (2003). Interacting Modalities through Functional Brain Modeling. In: Mira, J., Álvarez, J.R. (eds) Computational Methods in Neural Modeling. IWANN 2003. Lecture Notes in Computer Science, vol 2686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44868-3_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-44868-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40210-7

  • Online ISBN: 978-3-540-44868-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics