Skip to main content

Locating Hidden Groups in Communication Networks Using Hidden Markov Models

  • Conference paper
  • First Online:
Intelligence and Security Informatics (ISI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2665))

Included in the following conference series:

Abstract

A communication network is a collection of social groups that communicate via an underlying communication medium (for example newsgroups over the Internet). In such a network, a hidden group may try to camoflauge its communications amongst the typical communications of the network. We study the task of detecting such hidden groups given only the history of the communications for the entire communication network. We develop a probabilistic approach using a Hidden Markov model of the communication network. Our approach does not require the use of any semantic information regarding the communications. We present the general probabilistic model, and show the results of applying this framework to a simplified society. For 50 time steps of communication data, we can obtain greater than 90% accuracy in detecting both whether or not their is a hidden group, and who the hidden group members are.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Monge, P., Contractor, N.: Theories of Communication Networks. Oxford University Press (2002)

    Google Scholar 

  2. Carley, K., Prietula, M., eds.: Computational Organization Theory. Lawrence Erlbaum associates, Hillsdale, NJ (2001)

    Google Scholar 

  3. Sanil, A., Banks, D., Carley, K.: Models for evolving fixed node networks: Model fitting and model testing. Journal oF Mathematical Sociology 21 (1996) 173–196

    Article  Google Scholar 

  4. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77 (1989) 257–286

    Article  Google Scholar 

  5. Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE ASSP Magazine (1986) 4–15

    Google Scholar 

  6. Georgeff, M.P., Wallace, C.S.: A general selection criterion for inductive inference. European Conference on Artificial Intelligence (ECAI, ECAI84) (1984) 473–482

    Google Scholar 

  7. Bunke, H., Caelli, T., eds.: Hidden Markov Models. Series in Machine Perception and Artificial Intelligence — Vol. 45. World Scientific (2001)

    Google Scholar 

  8. Edgoose, T., Allison, L.: MML Markov classification of sequential data. Stats. and Comp. 9 (1999) 269–278

    Article  Google Scholar 

  9. Allison, L., Wallace, C.S., Yee, C.N.: Finite-state models in the alignment of macro-molecules. J. Molec. Evol. 35 (1992) 77–89

    Article  Google Scholar 

  10. Allison, L., Wallace, C.S., Yee, C.N.: Normalization of affine gap costs used in optimal sequence alignment. J. Theor. Biol. 161 (1993) 263–269

    Article  Google Scholar 

  11. Bystroff, C., Thorsson, V., Baker, D.: HMMSTR: A hidden Markov model for local sequence-structure correlations in proteins. Journal of Molecular Biology 301 (2000) 173–90

    Article  Google Scholar 

  12. Bystroff, C., Baker, D.: Prediction of local structure in proteins using a library of sequence-structure motifs. J Mol Biol 281 (1998) 565–77

    Article  Google Scholar 

  13. Bystroff, C., Shao, Y.: Fully automated ab initio protein structure prediction using I-sites, HMMSTR and ROSETTA. Bioinformatics 18 (2002) S54–S61

    Google Scholar 

  14. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  15. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Cambridge, new York (2001)

    Google Scholar 

  16. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press (1994)

    Google Scholar 

  17. Watts, D.J.: Small Worlds: The dynamics of networks between order and randomness. Princeton University Press, Princeton, NJ (1999)

    Google Scholar 

  18. Butler, B.: The dynamics of cyberspace: Examing and modelling online social structure. Technical report, Carnegie Melon University, Pittsburgh, PA (1999)

    Google Scholar 

  19. Carley, K., Wallace, A.: Computational organization theory: A new perspective. In Gass, S., Harris, C., eds.: Encyclopedia of Operations Research and Management Science. Kluwer Academic Publishers, Norwell, MA (2001)

    Google Scholar 

  20. Snijders, T.: The statistical evaluation of social network dynamics. In Sobel, M., Becker, M., eds.: Sociological Methodology dynamics. Basil Blackwell, Boston & London (2001) 361–395

    Google Scholar 

  21. Battiti, R.: Reactive search: Toward self-tuning heuristics. Modern Heuristic Search Methods, Chapter 4 (1996) 61–83

    Google Scholar 

  22. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem. Technical Report TR-95-052, Berkeley, ICSI, 1947 Center St. Suite 600 (1995)

    Google Scholar 

  23. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  24. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)

    Google Scholar 

  25. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. John Wiley & Sons Ltd., New York (1989)

    MATH  Google Scholar 

  26. Stelmack, M., N., N., Batill, S.: Genetic algorithms for mixed discrete/continuous optimization in multidisciplinary design. In: AIAA Paper 98-4771, AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri (1998)

    Google Scholar 

  27. Siebeker, D., Goldberg, M., Magdon-Ismail, M., Wallace, W.: A Hidden Markov Model for describing the statistical evolution of social groups over communication networks. Technical report, Rensselaer Polytechnic Institute (2003) Forthcoming.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Magdon-Ismail, M., Goldberg, M., Wallace, W., Siebecker, D. (2003). Locating Hidden Groups in Communication Networks Using Hidden Markov Models. In: Chen, H., Miranda, R., Zeng, D.D., Demchak, C., Schroeder, J., Madhusudan, T. (eds) Intelligence and Security Informatics. ISI 2003. Lecture Notes in Computer Science, vol 2665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44853-5_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-44853-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40189-6

  • Online ISBN: 978-3-540-44853-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics