Advertisement

An Example of an Automatic Differentiation-Based Modelling System

  • Thomas Kaminski
  • Ralf Giering
  • Marko Scholze
  • Peter Rayner
  • Wolfgang Knorr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2668)

Abstract

We present a prototype of a Carbon Cycle Data Assimilation System (CCDAS), which is composed of a terrestrial biosphere model (BETHY) coupled to an atmospheric transport model (TM2), corresponding derivative codes and a derivative-based optimisation routine. In calibration mode, we use first and second derivatives to estimate model parameters and their uncertainties from atmospheric observations and their uncertainties. In prognostic mode, we use first derivatives to map model parameters and their uncertainties onto prognostic quantities and their uncertainties. For the initial version of BETHY the corresponding derivative codes have been generated automatically by FastOpt’s automatic differentiation (AD) tool Transformation of Algorithms in Fortran (TAF). From this point on, BETHY has been developed further within CCDAS, allowing immediate update of the derivative code by TAF. This yields, at each development step, both sensitivity information and systematic comparison with observational data meaning that CCDAS is supporting model development. The data assimilation activities, in turn, benefit from using the current model version. We describe generation and performance of the various derivative codes in CCDAS, i.e. reverse scalar (adjoint), forward over reverse (Hessian) as well as forward and reverse Jacobian plus detection of the Jacobian’s sparsity.

Keywords

Data Assimilation Data Assimilation System Terrestrial Biosphere Tool Transformation Atmospheric Transport Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Giering, R., Kaminski, T.: Recipes for Adjoint Code Construction. ACM Trans. Math. Software 24 (1998) 437–474zbMATHCrossRefGoogle Scholar
  2. [2]
    Giering, R., Kaminski, T., Slawig, T.: Applying TAF to a Navier-Stokes solver that simulates an Euler flow around an airfoil. To appear in Future Generation Computer Systems (2003)Google Scholar
  3. [3]
    Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C.N., Marshall, J.: The global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res. 107 (doi:10.1029/2001JC000888, 2002)Google Scholar
  4. [4]
    Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C.N., Marshall, J.: Volume, heat and freshwater transports of the global ocean circulation 1992–1997, estimated from a general circulation model constrained by WOCE data. J. Geophys. Res. (doi:10.1029/2001JC001115, 2002)Google Scholar
  5. [5]
    Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C.: A Finite-Volume, Incompressible Navier Stokes Model for Studies of the Ocean on Parallel Computers. Technical Report 36, Massachusetts Institut of Technology, Center for Global Change Science, Cambridge, MA 02139, USA (1995)Google Scholar
  6. [6]
    Adcroft, A., Campin, J.M., Heimbach, P., Hill, C., Marshall, J.: The MITgcm. Online documentation, Massachusetts Institute of Technology, USA (2002)Google Scholar
  7. [7]
    Griffies, S.M., Harrison, M.J., Pacanowski, R.C., Rosati, A.: The FMS MOM4-beta User Guide. Technical report, NOAA/Geophysical Fluid Dynamics Laboratory (2002)Google Scholar
  8. [8]
    Galanti, E., Tziperman, E., Harrison, M., Rosati, A., Giering, R., Sirkes, Z.: The equatorial thermocline outcropping-a seasonal control on the tropical pacific ocean-atmosphere instability. Journal of Climate 15 (2002) 2721–2739Google Scholar
  9. [9]
    Rayner, P., Knorr, W., Scholze, M., Giering, R., Kaminski, T., Heimann, M., Quere, C.L.: Inferring terrestrial biosphere carbon fluxes from combined inversions of atmospheric transport and process-based terrestrial ecosystem models. In: Proceedings of 6th Carbon dioxide conference at Sendai. (2001) 1015–1017Google Scholar
  10. [10]
    Knorr, W.: Annual and interannual CO2 exchanges of the terrestrial biosphere: process based simulations and uncertainties. Glob. Ecol. and Biogeogr. 9 (2000) 225–252CrossRefGoogle Scholar
  11. [11]
    Heimann, M.: The global atmospheric tracer model TM2. Technical Report No.10, Max-Planck-Institut für Meteorologie, Hamburg, Germany (1995)Google Scholar
  12. [12]
    Knorr, W.: Satellitengestützte Fernerkundung und Modellierung des Globalen CO2-Austauschs der Landvegetation: Eine Synthese. PhD thesis, Max-Planck-Inst. für Meteorol., Hamburg, Germany (1997)Google Scholar
  13. [13]
    Wilson, M.F., Henderson-Sellers, A.: A global archive of land cover and soils data for use in general-circulation climate models. Journal of Climatology 5 (1985) 119–143Google Scholar
  14. [14]
    Nijssen, B., Schnur, R., Lettenmaier, D.: Retrospective estimation of soil moisture using the vic land surface model, 1980–1993. J. Climate (2001) 1790–1808Google Scholar
  15. [15]
    Schnur, R. (personal communication)Google Scholar
  16. [16]
    GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project-Carbon Dioxide. CD-ROM, NOAA CMDL, Boulder, Colorado (2001) [Also available on Internet via anonymous FTP to ftp://ftp.cmdl.noaa.gov, Path: ftp://ccg/co2/GLOBALVIEW]
  17. [17]
    Kaminski, T., Heimann, M., Giering, R.: A coarse grid three dimensional global inverse model of the atmospheric transport, 1, Adjoint model and Jacobian matrix. J. Geophys. Res. 104 (1999) 18,535–18,553Google Scholar
  18. [18]
    Knorr, W., Heimann, M.: Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus, Ser. B 47 (1995) 471–489Google Scholar
  19. [19]
    Kaminski, T., Knorr, W., Rayner, P., Heimann, M.: Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle. Global Biogeochemical Cycles 16 (2002) 14-1-14-16Google Scholar
  20. [20]
    Rayner et al.: The history of terrestrial carbon fluxes from 1980-2000: Results from a Data Assimilation System. Global Biogeochem. Cycles (in preparation 2003)Google Scholar
  21. [21]
    Takahashi, T., Wanninkhof, R.H., Feely, R.A., Weiss, R.F., Chipman, D.W., Bates, N., Olafsson, J., Sabine, C., Sutherland, S.C.: Net sea-air CO2flux over the global oceans: An improved estimate based on the sea-air pCO2 difference. In Nojiri, Y., ed.: Extended abstracts of the 2nd International CO2 in the Oceans Symposium, Tsukuba, Japan, January 18–22, 1999. (1999) 9–15Google Scholar
  22. [22]
    Le Quéré, C., Orr, J.C., Monfray, P., Aumont, O., Madec, G.: Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Global Biogeochem. Cycles 14 (2000) 1247–1265CrossRefGoogle Scholar
  23. [23]
    Houghton, R.A., Boone, R.D., Fruci, J.R., Hobbie, J., Melillo, J.M., Palm, C.A., Peterson, B.J., Shaver, G.R., Woodwell, G.M., Moore, B., Skole, D.L., Myers, N.: The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: Geographic distribution of the global flux. Tellus, Ser. B 39 (1987) 122–139Google Scholar
  24. [24]
    Andres, R.J., Marland, G., Boden, T., Bischoff, S.: Carbon dioxide emissions from fossil fuel consumption and cement manufacture 1751 to 1991 and an estimate for their isotopic composition and latitudinal distribution. In Wigley, T.M.L., Schimel, D., eds.: The Carbon Cycle. Cambridge Univ., New York, in press (1999)Google Scholar
  25. [25]
    Marland, G., Boden, T.A., Andres, R.J.: Global, regional, and national CO2 emissions. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn. (2001)Google Scholar
  26. [26]
    Tarantola, A.: Inverse Problem Theory-Methods for Data Fitting and Model Parameter Estimation. Elsevier Sci., New York (1987)zbMATHGoogle Scholar
  27. [27]
    Enting, I.G.: Inverse Problems in Atmospheric Constituent Transport. Cambridge University Press, Cambridge (2002)Google Scholar
  28. [28]
    Gilbert, J.C., Lemaréchal, C.: Some numerical experiments with variable-storage quasi-Newton algorithms. Mathematical Programming 45 (1989) 407–435zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    Scholze, M., Rayner, P., Knorr, W., Kaminski, T., Giering, R.: A prototype Carbon Cycle Data Assimilation System (CCDAS): Inferring interannual variations of vegetation-atmosphere CO2 fluxes. Abstract CG62A-05. Eos Trans. AGU 83 (2002)Google Scholar
  30. [30]
    Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optimization Methods and Software 1 (1992) 35–54CrossRefGoogle Scholar
  31. [31]
    Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia (2000)Google Scholar
  32. [32]
    Giering, R., Kaminski, T.: Using TAMC to generate efficient adjoint code: Comparison of automatically generated code for evaluation of first and second order derivatives to hand written code from the Minpack-2 collection. In Faure, C., ed.: Automatic Differentiation for Adjoint Code Generation. INRIA, Sophia Antipolis, France (1998) 31–37Google Scholar
  33. [33]
    Curtis, A.R., Powell, M.J.D., Reid, J.K.: On the estimation of sparse Jacobian matrices. J. Inst. Math. Appl. 13 (1974) 117–119zbMATHGoogle Scholar
  34. [34]
    Newsam, G.N., Ramsdell, J.D.: Estimation of sparse Jacobian matrices. SIAM J. Alg. Disc. Meth. 4 (1983) 404–417zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    Geitner, U., Utke, J., Griewank, A.: Automatic computation of sparse Jacobians by applying the method of Newsam and Ramsdell. In Berz, M., Bischof, C., Corliss, G., Griewank, A., eds.: Computational Differentiation: Techniques Applications, and Tools. SIAM, Philadelphia, Penn. (1996) 161–172Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Thomas Kaminski
    • 1
  • Ralf Giering
    • 1
  • Marko Scholze
    • 2
  • Peter Rayner
    • 3
  • Wolfgang Knorr
    • 4
  1. 1.FastOptHamburgGermany
  2. 2.MPI für MeteorologieD-20146 HamburgGermany
  3. 3.CSIRO-DARAspendale
  4. 4.MPI für BiogeochemieJenaGermany

Personalised recommendations