Skip to main content

An Explicit Solution for Computing the Euclidean d-dimensional Voronoi Diagram of Spheres in a Floating-Point Arithmetic

  • Conference paper
  • First Online:
Computational Science and Its Applications — ICCSA 2003 (ICCSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2669))

Included in the following conference series:

Abstract

The problem of computing a d-dimensional Euclidean Voronoi diagram of spheres is relevant to many areas, including computer simulation, motion planning, CAD, and computer graphics. This paper presents a new algorithm based on the explicit computation of the coordinates and radii of Euclidean Voronoi diagram vertices for a set of spheres. The algorithm is further applied to compute the Voronoi diagram with a specified precision in a fixed length floating-point arithmetic. The algorithm is implemented using the ECLibrary (Exact Computation Library) and tested on the example of a 3-dimensional Voronoi diagram of a set of spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, L., Cucker, F., Shub, M. and Smale, S. “Complexity and Real Computation” (1997)

    Google Scholar 

  2. Dey, T.K., Sugihara K. and Bajaj, C. L. DT in three dimensions with finite precision arithmetic, Comp. Aid. Geom. Des 9 (1992) 457–470

    Article  MATH  MathSciNet  Google Scholar 

  3. Edelsbrunner, H. and Mcke, E. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, 4th Annual ACM Symposium on Computational Geometry (1988) 118–133.

    Google Scholar 

  4. Fortune, S. and Wyk, C. Efficient exact arithmetic for computational geometry, 4th Annual ACM Symp. Comput. Geometry, (1993) 163–172

    Google Scholar 

  5. Gavrilova, M. and Rokne, J. Reliable line segment intersection testing, Computer Aided Design, (2000) 32, 737–745.

    Article  Google Scholar 

  6. Gavrilova, M., Ratschek, H. and Rokne, J. Exact computation of Voronoi diagram and Delaunay triangulation, Reliable Computing, (2000) 6(1) 39–60.

    Article  MathSciNet  Google Scholar 

  7. S. Krishnan, M. Foskey, T. Culver, J. Keyser, D. Manocha, PRECISE: Efficient Multiprecision Evaluation of Algebraic Roots and Predicates for Reliable Geometric Computations, Symp. on Computat. Geometry (2002)

    Google Scholar 

  8. Naher, S. The LEDA user manual, Version 3.1 (Jan. 16, 1995). Available from http://ftp.mpi-sb.mpg.de in directory /pub/LEDA.

  9. Ratschek, H. and Rokne, J. Exact computation of the sign of a finite sum, Applied Mathematics and Computation, (1999) 99, 99–127.

    Article  MATH  MathSciNet  Google Scholar 

  10. Rokne, J.: Interval arithmetic. In: Graphics Gems III, Academic Press, pp. 61–66 and pp. 454–457 (1992).

    Google Scholar 

  11. Sugihara, K. and Iri, M. A robust topology-oriented incremental algorithm for Voronoi diagrams, IJCGA, (1994) 4 (2): 179–228.

    Article  MATH  MathSciNet  Google Scholar 

  12. Yap, C., Dub, T. The exact computation paradigm, In “Computing in Euclidean Geometry” (2nd Edition). Eds. D.-Z. Du and F.K. Hwang, World Scientific Press (1995)

    Google Scholar 

  13. Gavrilova, M. (2002) Algorithm library development for complex biological and mechanical systems: functionality, interoperability and numerical stability DIMACS Workshop on Implementation of Geometric Algorithms, December 2002 (abstract)

    Google Scholar 

  14. Gavrilova, M. (2002) A Reliable Algorithm for Computing the Generalized Voronoi Diagram for a Set of Spheres in the Euclidean d-dimensional Space, in the Proceedings of the 14th Canadian Conference on Computational Geometry, August, Lethbridge, Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gavrilova, M.L. (2003). An Explicit Solution for Computing the Euclidean d-dimensional Voronoi Diagram of Spheres in a Floating-Point Arithmetic. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44842-X_84

Download citation

  • DOI: https://doi.org/10.1007/3-540-44842-X_84

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40156-8

  • Online ISBN: 978-3-540-44842-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics