Skip to main content

AIF - A Data Structure for Polygonal Meshes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2669))

Abstract

Meshing is an important topic in geometric modelling and computer graphics. This paper introduces a concise and fast data structure, called AIF (Adjacency and Incidence Framework). Its conciseness results from the fact that it is an orientable, but not an oriented, data structure, i.e. an orientation can be topologically induced as necessary in many applications. It is an optimal C 49 data structure for polygonal meshes, manifold and non-manifold, which means that a minimal number of direct and indirect accesses are required to retrieve adjacency and incidence information from it. In fact, it operates close to real-time even for huge meshes, what becomes it appropriate for real-time applications (e.g. multiresolution meshing refinement and simplification operations).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgart, B. G.: Winged-edge polyhedron representation. Technical report, STAN-CS-320, Stanford University, 1972.

    Google Scholar 

  2. Brisson, E.: Representing geometric structures in d dimension: topology and order. Descrete & Computational Geometry, Vol. 9,No. 4, 1993, pp.387–426.

    Article  MATH  MathSciNet  Google Scholar 

  3. Campagna, S., Kobblet, L., and Seidel, Hans-Peter: Directed Edges-A Scalable Representation for Triangular Meshes. JGT, Vol. 3.no.4, 1998, pp.1–12.

    Google Scholar 

  4. Carey, R., Bell, G., and Marrin, C.: The Virtual Reality Modeling Language ISO/IEC 14772-1, 1997. http://www.vrml.org/technicalinfo/specifications/

  5. Garland, M.: Multiresolution modeling: Survey & future opportunities. In Eurographics-State of the Art Reports, 1999, pp.111–131.

    Google Scholar 

  6. Heckbert, P. S., and Garland, M.: Survey of Polygonal Surface Simplification Algorithms. Siggraph Course Notes 25, 1997.

    Google Scholar 

  7. Hoppe, H.: Progressive Meshes. Proceedings of Siggraph, 1996, pp.99–108.

    Google Scholar 

  8. Hoppe, H.: Efficient Implementation of Progressive Meshes. Computer & Graphics, Vol.22,No. 1, 1998, pp.27–36.

    Article  Google Scholar 

  9. Kallmann, M. and Thalmann, D.: Star-Vertices: A Compact Representation for Planar Meshes with Adjacency Information. JGT, Vol.6,No. 1, 2001.

    Google Scholar 

  10. Lee, A., Dobkin, D., Sweldens, W. and Schrder, P.: Multiresolution Mesh Morphing. Proceedings of Siggraph, 1999, pp. 343–350.

    Google Scholar 

  11. Loop, C.: Managing Adjacency in Triangular Meshes. Tech. Report No. MSR-TR-2000-24, Microsoft Research, 2000.

    Google Scholar 

  12. Mäntylä, M.: An Introduction to Solid Modeling, Computer Science Press, 1988.

    Google Scholar 

  13. Ni, X., and Bloor, M. S.: Performance Evaluation of Boundary Data Structures. IEEE CG&A, Vol. 14,No. 6, 1994, pp.66–77.

    Google Scholar 

  14. Pajarola, R.: FastMesh: Efficient View-dependent Meshing. Proceedings of Pacific Graphics, 2001, pp.22–30.

    Google Scholar 

  15. Popovic, J., Hoppe, H.: Progressive Simplicial Complexes. Computer Graphics, Vol.31, 1997, pp.217–224.

    Google Scholar 

  16. Taubin, G., and Rossignac, J.: Geometric compression through topological surgery. ACM Transactions on Graphics, Vol.17,No. 2, 1998, pp.84–115.

    Article  Google Scholar 

  17. Wavefront Technologies, Inc. Wavefront File Formats, Version 4.0 RG-10-004, first ed. Santa Barbara. CA. 1993.

    Google Scholar 

  18. Weiler, K.: The radial edge structure: a topological representation for non-manifold geometric boundary modelling. In Geometric modelling for CAD applications. Elsevier Science Publish. 1998.

    Google Scholar 

  19. Weiler, K.: Edge-Based data structure for solid geometric in Curved-Surface Environments. IEEE CG&A, Vol.5,No. 1, 1985, pp.21–40.

    Google Scholar 

  20. Zorin, D., Schrder, P., and Sweldens, W.: Interactive Multiresolution Mesh Editing. Proceedings of Siggraph, 1997, pp.259–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silva, F.G.M., Gomes, A.J.P. (2003). AIF - A Data Structure for Polygonal Meshes. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44842-X_49

Download citation

  • DOI: https://doi.org/10.1007/3-540-44842-X_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40156-8

  • Online ISBN: 978-3-540-44842-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics