Skip to main content

From Stationarity to Self-similarity, and Back: Variations on the Lamperti Transformation

  • Chapter
  • First Online:
Processes with Long-Range Correlations

Part of the book series: Lecture Notes in Physics ((LNP,volume 621))

Abstract

The Lamperti transformation defines a one-to-one correspondence between stationary processes on the real line and self-similar processes on the real half-line. Although dating back to 1962, this fundamental result has further received little attention until a recent past, and it is the purpose of this chapter to survey the Lamperti transformation and its (effective and/or potential) applications, with emphasis on variations which can be made on the initial formulation. After having recalled basics of the transform itself, some results from the literature will be reviewed, which can be broadly classified in two types. In a first category, classical concepts from stationary processes and linear filtering theory, such as linear time-invariant systems or ARMA modeling, can be given self-similar counterparts by a proper “lampertization” whereas, in a second category, problems such as spectral analysis or prediction of self-similar processes can be addressed with classical tools after stationarization by a converse “delampertization”. Variations and new results will then be discussed by investigating consequences of the Lamperti transformation when applied to weakened forms of stationarity, and hence of self-similarity. Different forms of locally stationary processes will be considered this way, as well as cyclostationary processes for which “lampertization” will be shown to offer a suitable framework for defining a stochastic extension to the notion of discrete scale invariance which has recently been put forward as a central concept in many critical systems. Issues concerning the practical analysis (and synthesis) of such processes will be examined, with a possible use of Mellin-based tools operating directly in the space of scaling data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ayache, S. Cohen, and J. Lévy-Véhel: The covariance structure of multifractional Brownian motion, with application to long-range dependence IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP’00, Istanbul (TR) (2000)

    Google Scholar 

  2. J. A. Barnes and D. W. Allan: Proc. IEEE 54, 176 (1966)

    Article  Google Scholar 

  3. J. Beran:Statistics for Long-MemoryP rocesses (Chapman and Hall 1994)

    Google Scholar 

  4. M. V. Berry and Z. V. Lewis: Proc. R. Soc. Lon. A 370, 459 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. P. Bertrand, J. Bertrand and J. P. Ovarlez: ‘The Mellin transform’. In: The Transforms and Applications Handbook, ed. by A. D. Poularikas, (CRC Press 1996)

    Google Scholar 

  6. P. Borgnat, P. Flandrin and P. O. Amblard: Stochastic discrete scale invariance IEEE Sig. Proc. Lett, submitted (2001)

    Google Scholar 

  7. P. Borgnat, P. Flandrin and P. O. Amblard: IEEE Workshop on Stat. Signal. Proc SSP01, 66 (2001)

    Google Scholar 

  8. K. Burnecki, M. Maejima and A. Weron: Yokohama Math. J. 44, 25 (1997)

    MATH  MathSciNet  Google Scholar 

  9. E. Chassande-Mottin and P. Flandrin: Appl. Comp. Harm. Anal. 6, 252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Cohen: IEEE Signal Proc. Lett. 5, 292 (1998)

    Article  ADS  Google Scholar 

  11. K. Falconer: Fractal Geometry (Wiley, New York 1990)

    MATH  Google Scholar 

  12. P. Flandrin: ‘Scale-invariant Wigner spectra and self-similarity’. In: Signal Processing V: Theories and Applications ed. by L. Torres et al ( Elsevier 1990) 149

    Google Scholar 

  13. P. Flandrin: IEEE Trans. on Info. Th. 38, 910 (1992)

    Article  MathSciNet  Google Scholar 

  14. P. Flandrin: Time-Frequency/Time-Scale Analysis (Academic Press, San Diego 1999)

    Book  MATH  Google Scholar 

  15. W. A. Gardner: IEEE Signal Proc. Mag. 8, 14 (1991)

    Article  ADS  Google Scholar 

  16. E. Gladyshev: Th. Prob. Appl. 8, 173 (1963)

    Article  Google Scholar 

  17. H. L. Gray and N. F. Zhang: J. Time Series Anal 9, 133 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Koyama and H. Hara: Chaos, Solitons and Fractals 3, 467 (1993)

    Article  MATH  ADS  Google Scholar 

  19. J. Lamperti: Trans. Amer. Math. Soc. 104, 62 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  20. B. B. Mandelbrot and J. W. Van Ness: SIAM Rev. 10, 422 (1968)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. G. J. Maskarinec and B. Onaral: IEEE Trans. on Circuits and Systems 41, 75 (1994)

    Article  MATH  Google Scholar 

  22. Y. Meyer and H. Xu: Appl. Comp. Harm. Anal. 4, 366 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Noret: Contribution à l’étude de signauxauto-similaires et à mémoire longue au moyen de systèmes linéaires non stationnaires. PhD Thesis, Université de Nantes (1999)

    Google Scholar 

  24. E. Noret and M. Guglielmi: ‘Modélisation et synthèse d’une classe de signaux auto-similaires et à mémoire longue’. In: Proc. of Fractals in Engineering (Delft NL 1999) pp. 301–315

    Google Scholar 

  25. C. Nuzman and H. V. Poor: ‘Transformed spectral analysis of self-similar processes’. 33rd Annual Conf. on Info. Sci. Syst. (CISS’99, Baltimore MD 1999)

    Google Scholar 

  26. C. Nuzman and H. V. Poor: J. Appl. Prob. 37, 429 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. R. Peltier and J. Lévy-Véhel: Multifractional Brownian motion: definition and preliminaryr esults INRIA Research Report No. 2645 (1995)

    Google Scholar 

  28. M. B. Priestley: Spectral Analysis and Time Series (Academic Press 1981)

    Google Scholar 

  29. R. Roberts, W. Brown and H. Loomis: IEEE Sig. Proc. Mag., 38 (1991)

    Google Scholar 

  30. G. Samorodnitsky and M. S. Taqqu: Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance (Chapman and Hall 1994)

    Google Scholar 

  31. R. Silverman: IEEE Trans. on Info. Th. IT-3, 182 (1957)

    Article  Google Scholar 

  32. D. Sornette: Physics Reports 297, 239 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  33. C. Tricot: Curves and Fractal Dimension (Springer Verlag 1995)

    Google Scholar 

  34. W. Vervaat: Bull. Int. Stat. Inst. 52, 199 (1987)

    MathSciNet  Google Scholar 

  35. A. Vidács and J. T. Virtamo: ‘ML estimation of the parameters of fBm traffic ith geometrical sampling’. 5th Int. Conf. on Broadband Comm (BC’99, Hong-Kong 1999)

    Google Scholar 

  36. A. Vidács and J. T. Virtamo: IEEE Infocom 2000, Tel-Aviv (2000) pp. 1791–1796

    Google Scholar 

  37. B. Yazici and R. L. Kashyap: IEEE Trans. on Signal Proc. 45, 396 (1997)

    Article  Google Scholar 

  38. W. Zhao and R. Rao: ‘On modeling self-similar random processes in discrete-time’. In: IEEE Int. Symp. on Time-Freq. and Time-Scale Anal. (TFTS’98, Pittsburgh 1998) pp. 333–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flandrin, P., Borgnat, P., Amblard, PO. (2003). From Stationarity to Self-similarity, and Back: Variations on the Lamperti Transformation. In: Rangarajan, G., Ding, M. (eds) Processes with Long-Range Correlations. Lecture Notes in Physics, vol 621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44832-2_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-44832-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40129-2

  • Online ISBN: 978-3-540-44832-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics