Skip to main content

Patterns and Correlations in Economic Phenomena Uncovered Using Concepts of Statistical Physics

  • Chapter
  • First Online:
Book cover Processes with Long-Range Correlations

Part of the book series: Lecture Notes in Physics ((LNP,volume 621))

  • 996 Accesses

Abstract

This paper discusses some of the similarities between work being done by economists and by physicists seeking to find “patterns” in economics. We also mention some of the differences in the approaches taken and seek to justify these different approaches by developing the argument that by approaching the same problem from different points of view, new results might emerge. In particular, we review two such new results. Specifically, we discuss the two newly-discovered scaling results that appear to be “universal”, in the sense that they hold for widely different economies as well as for different time periods: (i) the fluctuation of price changes of any stock market is characterized by a probability density function (PDF), which is a simple power law with exponent α + 1 = 4 extending over 102 standard deviations (a factor of 108 on the y-axis); this result is analogous to the Gutenberg-Richter power law describing the histogram of earthquakes of a given strength; (ii) for a wide range of economic organizations, the histogram that shows how size of organization is inversely correlated to fluctuations in size with an exponent ≈ 0.2. Neither of these two new empirical laws has a firm theoretical foundation. We also discuss results that are reminiscent of phase transitions in spin systems, where the divergent behavior of the response function at the critical point (zero magnetic field) leads to large fluctuations. We discuss a curious “symmetry breaking” for values of Σ above a certain threshold value Σc; here Σ is defined to be the local first moment of the probability distribution of demand Ω - the difference between the number of shares traded in buyer-initiated and seller-initiated trades. This feature is qualitatively identical to the behavior of the probability density of the magnetization for fixed values of the inverse temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Pareto: Cours d’Economie Politique, (Lausanne and Paris 1897)

    Google Scholar 

  2. B. B. Mandelbrot: J. Business 36, 394 (1963)

    Article  Google Scholar 

  3. H. E. Stanley: Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford 1971)

    Google Scholar 

  4. H. Takayasu [ed]: Empirical Science of Financial Fluctuations: The Advent of Econophysics (Springer, Berlin 2002)

    Google Scholar 

  5. H. E. Stanley: Rev. Mod. Phys. 71, S358 (1999)

    Article  Google Scholar 

  6. R. N. Mantegna and H. E. Stanley: An Introduction to Econophysics: Correlations and Complexity in Finance, (Cambridge University Press, Cambridge 2000)

    Google Scholar 

  7. J. P. Bouchaud: Quantitative Finance, 1, 105 (2001)

    Article  Google Scholar 

  8. R. L. Axtell: Science 293, 1818 (2001)

    Article  ADS  Google Scholar 

  9. M. H. R. Stanley, S. V. Buldyrev, S. Havlin, R. Mantegna, M. A. Salinger and H. E. Stanley: Econ. Lett. 49, 453 (1996)

    Article  Google Scholar 

  10. M. H. R. Stanley, L. A. N. Amaral, S. V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger and H. E. Stanley: Nature 379, 804 (1996)

    Article  ADS  Google Scholar 

  11. L. Bachelier: Théorie de la spéculation Ph.D. thesis in mathematics, Annales Scientifiques de l’Ecole Normale Supérieure III-17, 21 (1900)

    MathSciNet  Google Scholar 

  12. R. N. Mantegna and H. E. Stanley: Nature 376, 46 (1995)

    Google Scholar 

  13. Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C. K. Peng and H. E. Stanley: Phys. Rev. E 60, 1390 (1999)

    Article  ADS  Google Scholar 

  14. Z. Ding, C. W. J. Granger, and R. F. Engle: J. Empirical Finance 1, 83 (1993)

    Article  Google Scholar 

  15. R. N. Mantegna and H. E. Stanley: Phys. Rev. Lett. 73, 2946 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. B. Podobnik, P. Ch. Ivanov, Y. Lee, A. Chessa, and H. E. Stanley: Europhysics Letters 50, 711 (2000)

    Article  ADS  Google Scholar 

  17. R. N. Mantegna and H. E. Stanley: Lévy Flights and Related Topics in Physics edited by M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch (Springer, Berlin 1995) pp. 300–312

    Chapter  Google Scholar 

  18. R. N. Mantegna and H. E. Stanley: Physica A 254, 77 (1998)

    Article  Google Scholar 

  19. B. Podobnik, P. Ch. Ivanov, Y. Lee, and H. E. Stanley: Europhysics Letters 52, 491 (2000)

    Article  ADS  Google Scholar 

  20. P. Ch. Ivanov, B. Podobnik, Y. Lee, and H. E. Stanley: Truncated Lévy Process with Scale-Invariant Behavior [Proc. NATO Advanced Research Workshop on Application of Physics in Economic Modeling, Prague 8–10 February 2001] Physica A 299, 154 (2001)

    Article  MATH  ADS  Google Scholar 

  21. J. A. Skjeltorp: Physica 283, 486 (2001)

    Google Scholar 

  22. T. Lux: Appl. Finan. Econ 6, 463 (1996)

    Article  ADS  Google Scholar 

  23. P. Gopikrishnan, M. Meyer, L. A. N. Amaral, and H. E. Stanley: Eur. Phys. J. B 3, 139 (1998)

    Article  ADS  Google Scholar 

  24. V. Plerou, P. Gopikrishnan, L. A. N. Amaral, M. Meyer, and H. E. Stanley: Phys. Rev. E 60, 6519 (1999)

    Article  ADS  Google Scholar 

  25. P. Gopikrishnan, V. Plerou, L. A. N. Amaral, M. Meyer, and H. E. Stanley: Phys. Rev. E 60, 5305 (1999)

    Article  ADS  Google Scholar 

  26. B. Gutenberg and C. F. Richter: Seismicity of the Earth and Associated Phenomenon (2nd Edition, Princeton University Press, Princeton 1954)

    Google Scholar 

  27. D. L. Turcotte: Fractals and Chaos in Geology and Geophysics, (Cambridge Univ. Press, Cambridge 1992)

    Google Scholar 

  28. J. B. Rundle, D. L. Turcotte, and W. Klein: Reduction and Predictability of Natural Disasters (Addison-Wesley, Reading MA 1996)

    Google Scholar 

  29. K. Matia, L. A. N. Amaral, S. Goodwin, and H. E. Stanley: Phys. Rev. E Rapid Communications 66, 045103 (2002)

    Google Scholar 

  30. V. Plerou, P. Gopikrishnan, L. A. N. Amaral, X. Gabaix, and H. E. Stanley: Phys. Rev. E (Rapid Communications) 62, 3023 (2000)

    Article  ADS  Google Scholar 

  31. P. Gopikrishnan, V. Plerou, X. Gabaix, and H. E. Stanley: Phys. Rev. E (Rapid Communications) 62, 4493 (2000)

    Article  ADS  Google Scholar 

  32. S. Ghashgaie, W. Breymann, J. Peinke, P. Talkner and Y. Dodge: Nature, 381, 767 (1996)

    Article  ADS  Google Scholar 

  33. R. N. Mantegna and H. E. Stanley: Nature 383, p.587 (1996)

    Article  ADS  Google Scholar 

  34. R. N. Mantegna and H. E. Stanley: Physica A 239, 255 (1997)

    Article  ADS  Google Scholar 

  35. V. Plerou, P. Gopikrishnan, X. Gabaix, and H. E. Stanley: Phys. Rev. E 66, 027104-1 (2002)

    Google Scholar 

  36. V. Plerou, P. Gopikrishnan, and H. E. Stanley: Nature, 420, cond-mat/0111349 (2002)

    Google Scholar 

  37. M. L. Mehta: Random Matrices (Academic Press, Boston 1991)

    MATH  Google Scholar 

  38. T. Guhr, A. Muller-Groeling, and H. A. Weidenmüller: Phys. Reports 299, 189 (1998)

    Article  ADS  Google Scholar 

  39. E. P. Wigner: Ann. Math. 53, 36 (1951)

    Article  MathSciNet  Google Scholar 

  40. E. P. Wigner: Proc. Cambridge Philos. Soc. 47, 790 (1951)

    Article  MATH  Google Scholar 

  41. E. P. Wigner: Conference on Neutron Physics by Time-of-fiight (Gatlinburg, Tennessee 1956) pp. 59–70

    Google Scholar 

  42. M. L. Mehta and F. J. Dyson: J. Math. Phys. 4, 713 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. F. J. Dyson: Revista Mexicana de Fisica 20, 231 (1971)

    Google Scholar 

  44. A. M. Sengupta and P. P. Mitra: Phys. Rev. E 60, 3389 (1999)

    Article  ADS  Google Scholar 

  45. L. Laloux, P. Cizeau, J.-P. Bouchaud and M. Potters: Phys. Rev. Lett. 83, 1469 (1999)

    Article  ADS  Google Scholar 

  46. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, and H. E. Stanley: Phys. Rev. Lett. 83, 1471 (1999)

    Article  ADS  Google Scholar 

  47. P. Gopikrishnan, B. Rosenow, V. Plerou, and H. E. Stanley: Phys. Rev. E Rapid Communications 64, 035106-1 (2001)

    Google Scholar 

  48. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, T. Guhr, and H. E. Stanley: Phys. Rev. E 65, 066126 (2002)

    Google Scholar 

  49. B. Rosenow, V. Plerou, P. Gopikrishnan, and H. E. Stanley: Europhysics Letters 59, 500 cond-mat/0111537 (2002)

    Google Scholar 

  50. L. A. N. Amaral, S. V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, H. E. Stanley, and M. H. R. Stanley: J. Phys. I France 7, 621 (1997)

    Article  Google Scholar 

  51. S. V. Buldyrev, L. A. N. Amaral, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, H. E. Stanley, and M. H. R. Stanley: J. Phys. I France 7, 635 (1997)

    Article  Google Scholar 

  52. L. A. N. Amaral, S. V. Buldyrev, S. Havlin, M. A. Salinger and H. E. Stanley: Phys. Rev. Lett. 80 1385 (1998)

    Article  ADS  Google Scholar 

  53. J. Sutton: The variance of firm growth rates: the’ scaling’ puzzle, (working paper, London School of Economics 2001)

    Google Scholar 

  54. G. Bottazzi, G. Dosi, M. Riccaboni and F. Pammolli: The scaling of growth processes and the dynamics of business firms (Economics Department at University of Siena and Pisa San’ Anna School of Advanced Studies working paper, based on Invited Talk at the 56th ESEM Econometric Society meeting, Lausanne, 26–29 Aug 2001)

    Google Scholar 

  55. H. E. Stanley, L. A. N. Amaral, P. Gopikrishnan, V. Plerou and M. A. Salinger: Scale invariance and universality in economic phenomena (working paper, based on Invited Talk at the 56th ESEM Econometric Society meeting, Lausanne 26–29 Aug 2001)

    Google Scholar 

  56. H. Takayasu and K. Okuyama: Fractals 6, 67 (1998)

    Article  Google Scholar 

  57. Y. Lee, L. A. N. Amaral, D. Canning, M. Meyer, and H. E. Stanley: Phys. Rev. Letters 81, 3275 (1998)

    Article  ADS  Google Scholar 

  58. V. Plerou, L. A. N. Amaral, P. Gopikrishnan, M. Meyer, and H. E. Stanley: Nature 400, 433 (1999)

    Article  ADS  Google Scholar 

  59. T. Keitt and H. E. Stanley: Nature 393, 257 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stanley, H., Gopikrishnan, P., v. Plerou, H., Salinger, M. (2003). Patterns and Correlations in Economic Phenomena Uncovered Using Concepts of Statistical Physics. In: Rangarajan, G., Ding, M. (eds) Processes with Long-Range Correlations. Lecture Notes in Physics, vol 621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44832-2_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-44832-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40129-2

  • Online ISBN: 978-3-540-44832-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics