Skip to main content

Unitary Error Bases: Constructions, Equivalence, and Applications

  • Conference paper
  • First Online:
Book cover Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2643))

Abstract

Unitary error bases are fundamental primitives in quantum computing, which are instrumental for quantum error-correcting codes and the design of teleportation and super-dense coding schemes. There are two prominent constructions of such bases: an algebraic construction using projective representations of finite groups and a combinatorial construction using Latin squares and Hadamard matrices. An open problem posed by Schlingemann and Werner relates these two constructions, and asks whether each algebraic construction is equivalent to a combinatorial construction. We answer this question by giving an explicit counterexample in dimension 165 which has been constructed with the help of a computer algebra system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Alperin and R.B. Bell. Groups and representations, volume 162 of Graduate texts in mathematics. Springer, 1995.

    Google Scholar 

  2. A. Ashikhmin and E. Knill. Nonbinary quantum stabilizer codes. IEEE Trans. Inform. Theory, 47(7): 3065–3072, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  3. Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters, 70(13):1895–1899, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Bosma, J.J. Cannon, and C. Playoust. The Magma algebra system I: The user language. J. Symb. Comp., 24:235–266, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger. Experimental quantum teleportation. Nature, 390:575–579, 1997.

    Article  Google Scholar 

  6. R. Frucht. Über die Darstellung endlicher Abelscher Gruppen durch Kollineationen. J. Reine Angew. Math., 166:16–28, 1931.

    MATH  Google Scholar 

  7. The GAP Team, Lehrstuhl D für Mathematik, RWTH Aachen, Germany and School of Mathematical and Computational Sciences, U. St. Andrews, Scotland. GAP — Groups, Algorithms, and Programming, Version 4, 1997.

    Google Scholar 

  8. A. Klappenecker and M. Rötteler. Beyond Stabilizer Codes I: Nice Error Bases. IEEE Trans. Inform. Theory, 48(8):2392–2395, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Knill. Group representations, error bases and quantum codes. Los Alamos National Laboratory Report LAUR-96-2807, 1996.

    Google Scholar 

  10. J. Patera and H. Zassenhaus. The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type A n−1. J. Math. Phys., 29(3):665–673, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Schlingemann. Problem 6 in Open Problems in Quantum Information Theory. http://www.imaph.tu-bs.de/qi/problems/

  12. J. Schwinger. Unitary operator bases. Proc. Nat. Acad. Sci., 46:570–579, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Sims. Computation with finitely presented groups. Cambridge University Press, 1994.

    Google Scholar 

  14. R. Werner. All teleportation and dense coding schemes. J. Phys. A, 34:7081–7094, 2001.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klappenecker, A., Rötteler, M. (2003). Unitary Error Bases: Constructions, Equivalence, and Applications. In: Fossorier, M., Høholdt, T., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2003. Lecture Notes in Computer Science, vol 2643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44828-4_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44828-4_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40111-7

  • Online ISBN: 978-3-540-44828-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics