Skip to main content

Pareto Optimality in Coevolutionary Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2159))

Abstract

We develop a novel coevolutionary algorithm based upon the concept of Pareto optimality. The Pareto criterion is core to conventional multi-objective optimization (MOO) algorithms. We can think of agents in a coevolutionary system as performing MOO, as well: An agent interacts with many other agents, each of which can be regarded as an objective for optimization. We adapt the Pareto concept to allow agents to follow gradient and create gradient for others to follow, such that co-evolutionary learning succeeds. We demonstrate our Pareto coevolution methodology with the majority function, a density classification task for cellular automata.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Andre et al. Evolution of intricate long-distance communication signals in cellular automata using genetic programming. In C. G. Langton and K. Shimohara, editors, Artificial Life V, pages 16–18. MIT Press, 1996.

    Google Scholar 

  2. J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proc. Second Int. Conf. on Genetic Algorithms, pages 14–21. Lawrence Earlbaum, 1987.

    Google Scholar 

  3. D. Cliff and G. F. Miller. Tracking the red queen: Measurements of adaptive progress in co-evolutionary simulations. In F. Moran et al., editors, Third Euro. Conf. on Artificial Life, pages 200–218. Springer, 1995.

    Google Scholar 

  4. S. G. Ficici and J. B. Pollack. A game-theoretic approach to the simple coevolutionary algorithm. In Schoenauer et al. [19], pages 467–476.

    Google Scholar 

  5. C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

    Article  Google Scholar 

  6. D. Hillis. Co-evolving parasites improves simulated evolution as an optimization procedure. In C. Langton et al., editors, Artificial Life II, pages 313–324. Addison-Wesley, 1991.

    Google Scholar 

  7. H. Juillé. Methods for Statistical Inference: Extending the Evolutionary Computation Paradigm. PhD thesis, Brandeis University, 1999.

    Google Scholar 

  8. H. Juillé and J. B. Pollack. Co-evolving intertwined spirals. In L. J. Fogel et al., editors, Proc. Fifth Annual Conf. on Evolutionary Programming, pages 461–468. MIT Press, 1996.

    Google Scholar 

  9. H. Juillé and J. B. Pollack. Coevolutionary learning: a case study. In J. Shavlik, editor, Proc. Fifteenth Int. Conf. on Machine Learning, pages 251–259. Morgan Kaufmann, 1998.

    Google Scholar 

  10. H. Juillé and J. B. Pollack. Coevolving the “ideal” trainer: Application to the discovery of cellular automata rules. In J. R. Koza et al., editors, Proc. Third Annual Conf. on Genetic Programming, pages 519–527. Morgan Kaufmann, 1998.

    Google Scholar 

  11. M. Land and R. K. Belew. No perfect two-state cellular automata for density classification exists. Physical Review Letters, 74(25):1548–1550, 1995.

    Article  Google Scholar 

  12. M. Mitchell et al. Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D, 75:361–391, 1994.

    Article  MATH  Google Scholar 

  13. J. Noble and R. A. Watson. Pareto coevolution: Using performance against coevolved opponents in a game as dimensions for pareto selection. In L. Spector et al., editors, Proc. 2001 Genetic and Evo. Comp. Conf. Morgan Kaufmann, 2001.

    Google Scholar 

  14. G. M. B. Oliveira et al. Evolving solutions of the density classification task in 1d cellular automata, guided by parameters that estimate their dynamic behaviour. In M. A. Bedau et al., editors, Artificial Life VII, pages 428–436. MIT Press, 2000.

    Google Scholar 

  15. B. Olsson. NK-landscapes as test functions for evaluation of host-parasite algorithms. In Schoenauer et al. [19], pages 487–496.

    Google Scholar 

  16. J. Paredis. Towards balanced coevolution. In Schoenauer et al. [19], pages 497–506.

    Google Scholar 

  17. J. B. Pollack and A. D. Blair. Co-evolution in the successful learning of backgammon strategy. Machine Learning, 32(3):225–240, 1998.

    Article  MATH  Google Scholar 

  18. C. D. Rosin. Coevolutionary Search Among Adversaries. PhD thesis, University of California, San Diego, 1997.

    Google Scholar 

  19. M. Schoenauer et al., editors. Parallel Prob. Solv. from Nature 6. Springer, 2000.

    Google Scholar 

  20. R. A. Watson and J. B. Pollack. Symbiotic combination as an alternative to sexual recombination in genetic algorithms. In Schoenauer et al. [19], pages 425–434.

    Google Scholar 

  21. J. Werfel et al. Resource sharing and coevolution in evolving cellular automata. IEEE Transactions on Evolutionary Computation, 4(4):388–393, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ficici, S.G., Pollack, J.B. (2001). Pareto Optimality in Coevolutionary Learning. In: Kelemen, J., Sosík, P. (eds) Advances in Artificial Life. ECAL 2001. Lecture Notes in Computer Science(), vol 2159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44811-X_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-44811-X_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42567-0

  • Online ISBN: 978-3-540-44811-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics