Skip to main content

Survival of the Unfittest? - The Seceder Model and its Fitness Landscape

  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2159))

Included in the following conference series:

Abstract

The seceder model is an extremely simple individual based model which shows how the local tendency to be different gives rise to the formation of hierarchically structured groups, called the seceder effect. The model consists of a population of simple entities which reproduce and die. Tri a single reproduction event three individuals are chosen randomly and the individual which possesses the largest distance to their mean is reproduced by creating a mutated copy (offspring). The offspring replaces a randomly chosen individual of the population. In this contribution we investigate the effective fitness landscape of the seceder model. Fitness is measured as reproductive success. The investigation of the fitness landscape revealed an on the first view counterintuitive phenomena: The individuals of the basic seceder model are always located in the worst regions of the fitness landscape where the replication rate is relatively low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bagnoli and M. Bezzi Species formation in simple ecosystems. Int. J. Mod. Phys. C, 9(4):555–571, June 1998.

    Google Scholar 

  2. P. Bak and K. Sneppen Punctuated equilibrium and criticality in a simple model evolution. Phys. Rev. Lett., 71:4083–6, 1993.

    Article  Google Scholar 

  3. U. Dieckmann and M. Doebeli On the origin of species by sympatric speciation. Nature, 400(6742):354 357, 1999.

    Article  Google Scholar 

  4. P. Dittrich. The seceder effect in bounded space. Inter Journal, 2000. presented at International Conference on Complex Systems, 21–26 May, 2000, Nashua, NH, InterJournal status: submitted, manuscript number: 363.

    Google Scholar 

  5. P. Dittrich, F. Liljeros, A. Soulier, and W. Banzhaf. Spontanous group formation in the seceder model. Phys. Rev. Lett., 84:3205–8, 2000.

    Article  Google Scholar 

  6. B. Drossel Simple model for the formation of a complex organism. Phys. Rev. Lett., 82(25):5144–7, 1999.

    Article  Google Scholar 

  7. M. Ebner, R. A. Watson, and J. Alexander. Co-evolutionary dynamics on a deformable landscape. In Proceedings of the 2000 (Congress on Evolutionary (Jom-putation (C’EC’2000), volume 2, pages 1284–1291, San Diego Marriott Hotel, La Jolla, CA, 2000. IEEE.

    Google Scholar 

  8. M. Eigen and P. Schuster. The hypercycle: a principle of natural self-organisation, part A. Naturwissenschaften, 64(ll):541–565, 1977.

    Article  Google Scholar 

  9. Douglas J. Futuyma Evolutionary Biology. Sinauer, Sunderland, MA, 1997.

    Google Scholar 

  10. P. Hedström and R. Swedberg, editors. Social Mechanisms: An Analytical Approach to Social Theory, Cambridge, MA, 1998. Cambridge Univ. Pr.

    Google Scholar 

  11. P.G. Higgs and B. Derrida Stochastic models for species formation in evolving populations. J. Phys. A, 24(17):985 991, Sep. 1991.

    Google Scholar 

  12. K. Johst, M. Doebeli, and R. Brandi Evolution of complex dynamics in spatially structured populations. Proc. R. Soc. Lond. Ser. R, 266(1424): 1147–1154, 1999.

    Article  Google Scholar 

  13. A. S. Kondrashov and F. A. Kondrashov Interactions among quantitative traits in the course of sympatric speciation. Nature, 400(6742):351–354, 1999.

    Article  Google Scholar 

  14. F. Manzo and L. Peliti Geographic speciation in the Derrida-Higgs model of species formation. J. Phys. A, 27(21):7079–7086, Nov. 1994.

    Google Scholar 

  15. R. E. Michod Darwinian Dynamics-Evolutionary Transitions in Fitness and Individuality. Princeton University Press, Princeton, NJ, 1999.

    Google Scholar 

  16. M. E. J. Newman Self-organized criticality, evolution, and the fossil extinction record. Proc. R. Soc. London Ser. R, 263:1605–10, 1996.

    Article  Google Scholar 

  17. T. Thomas Schelling. Micro Motives and Macrobehavior. Norton, New York, 1978.

    Google Scholar 

  18. N. Shamir, D. Saad, and E. Marom Preserving the diversity of a genetically evolving population of nets using the functional behavior of neurons. Complex Systems, 7(5):327–46, 1993.

    MATH  Google Scholar 

  19. G. F. Turner and M. T. Burrows A model of sympatric speciation by sexual selection. Proc. R. Soc. Lond. Ser. B, 260(1359):287–292, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dittrich, P., Banzhaf, W. (2001). Survival of the Unfittest? - The Seceder Model and its Fitness Landscape. In: Kelemen, J., Sosík, P. (eds) Advances in Artificial Life. ECAL 2001. Lecture Notes in Computer Science(), vol 2159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44811-X_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-44811-X_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42567-0

  • Online ISBN: 978-3-540-44811-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics