Skip to main content

Solving a “Hard” Problem to Approximate an “Easy” One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems

  • Conference paper
  • First Online:
Book cover Algorithm Engineering and Experimentation (ALENEX 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2153))

Included in the following conference series:

Abstract

We consider geometric instances of the Maximum Weighted Matching Problem (MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000 vertices. Making use of a geometric duality relationship between MWMP, MTSP, and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields in near-linear time solutions as well as upper bounds. Using various computational tools, we get solutions within considerably less than 1% of the optimum.

An interesting feature of our approach is that, even though an FWP is hard to compute in theory and Edmonds’ algorithm for maximum weighted matching yields a polynomial solution for the MWMP, the practical behavior is just the opposite, and we can solve the FWP with high accuracy in order to find a good heuristic solution for the MWMP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the Solution of Traveling Salesman Problems. Doc.Math. J.DMV, Extra Volume ICM III (1998), 645–656.

    Google Scholar 

  2. S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric problems. Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., (1996), 2–11.

    Google Scholar 

  3. C. Bajaj. The algebraic degree of geometric optimization problems. Discrete and Computational Geometry, 3 (1988), 177–191.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. I. Barvinok, D. S. Johnson, G. J. Woeginger, and R. Woodroofe. The Maximum TSP under polyhedral norms. Proc. IPCO 1998, Springer LNCS 1412, 195–201.

    Google Scholar 

  5. S. Boyd and W. R. Pulleyblank. Optimizing over the subtour polytope of the traveling salesman problem. Mathematical Programming, 49 (1991), 163–187.

    Article  MathSciNet  Google Scholar 

  6. W. Cook and A. Rohe. Computing minimum-weight perfect matchings. INFORMS Journal on Computing 11 (1999) 138–148.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Edmonds. Paths, trees, and flowers. Can. J. Mathematics, 17 (1965), 449–467.

    MATH  MathSciNet  Google Scholar 

  8. J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the National Bureau of Standards (B), 69 (1965), 125–130.

    MATH  MathSciNet  Google Scholar 

  9. S. P. Fekete. Simplicity and hardness of the Maximum TSP under geometric distances. Proc. SODA 1999, 337–345.

    Google Scholar 

  10. S. P. Fekete and H. Meijer. On Minimum Stars, Minimum Steiner Stars, and Maximum Matchings. Discrete and Computational Geometry, 23 (2000), 389–407.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. N. Gabow. Data Structures for weighted matching and nearest common ancestors with linking. Proc. SODA 1990, 434–443.

    Google Scholar 

  12. H. W. Kuhn. A note on Fermatś problem. Mathematical Programming, 4 (1973), 98–107.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Löbel. Solving large-scale real-world minimum-cost flow problems by a network simplex method. ZIB Preprint SC 96-7, 1996.

    Google Scholar 

  14. D. S. Johnson and C. H. Papdimitriou. Computatonal complexity. Chapter 3 in: E. Lawler, J. Lenstra, A. Rinnooy Kan, D. Shmoys, eds., The Traveling Salesman Problem. Wiley, New York, 1985.

    Google Scholar 

  15. K. Mehlhorn and G. Schäfer. Implementation of O(nmlogn) weighted matchings-The power of data structures. Proc. WAE 2000, Springer LNCS, 2000.

    Google Scholar 

  16. J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SI AM J. Comput., 28 (1999), 1298–1309.

    Article  MATH  Google Scholar 

  17. A. Rohe. Parallele Heuristiken für sehr große Traveling Salesman Probleme. Diploma thesis, Universität Bonn, 1997, 33–49.

    Google Scholar 

  18. A. Tamir and J. S. B. Mitchell. A maximum b-matching problem arising from median location models with applications to the roomates problem. Mathematical Programming, 80 (1998), 171–194.

    MathSciNet  Google Scholar 

  19. P. M. Vaidya. Geometry helps in matching. SIAM J. Comput., 18 (1989), 1201–1225.

    Article  MATH  MathSciNet  Google Scholar 

  20. K. R. Varadarajan. A divide-and-conquer-algorithm for min-cost perfect matching in the plane. Proc. Found. Science, 39 (1998), 320–329.

    Google Scholar 

  21. E. Weiszfeld. Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Mathematics Journal, 43 (1937), 355–386.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fekete, S.P., Meijer, H., Rohe, A., Tietze, W. (2001). Solving a “Hard” Problem to Approximate an “Easy” One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems. In: Buchsbaum, A.L., Snoeyink, J. (eds) Algorithm Engineering and Experimentation. ALENEX 2001. Lecture Notes in Computer Science, vol 2153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44808-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44808-X_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42560-1

  • Online ISBN: 978-3-540-44808-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics