Advertisement

An Efficient Kronecker Representation for PEPA Models

  • Jane Hillston
  • Leïla Kloul
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2165)

Abstract

In this paper we present a representation of the Markov process underlying a PEP A model in terms of a Kronecker product of terms. Whilst this representation is similar to previous representations of Stochastic Automata Networks and Stochastic Petri Nets, it has novel features, arising from the definition of the PEPA models. In particular, capturing the correct timing behaviour of cooperating PEPA activities relies on functional dependencies.

Keywords

Action Type Label Transition System Process Algebra Derivation Graph Tensor Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajmone Marsan, A., Conte, G., Balbo, G.: A class of generalised stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems 2(2) (1984) 93–122CrossRefGoogle Scholar
  2. 2.
    Bernardo, M., Gorrieri, R.: A Tutorial on EMPA: A theory of concurrent processes with nondeterminism, probabilities and time. Theoretical Computer Science. 201 (1998) 1–54CrossRefMathSciNetGoogle Scholar
  3. 3.
    Buchholz, B.: Compositional analysis of a Markovian Process Algebra. Proc. of 2nd Process Algebra and Performance Modelling Workshop. In U. Herzog and M. Rettelbach Editors (1994)Google Scholar
  4. 4.
    Buchholz, P., Kemper, P.: Numerical analysis of stochastic marked graphs. Proc. of Int. Workshop on Petri Nets and Performance Models. IEEE-Computer Society Press. Durham, NC (1995) 32–41CrossRefGoogle Scholar
  5. 5.
    Campos, J., Donatelli, S., Silva, M.: Structured solution of stochastic DSSP systems. Proc. of Int. Workshop on Petri Nets and Performance Models. IEEE Computer Society Press. St Malo, France (1997) 91–100Google Scholar
  6. 6.
    Ciardo, G., Miner, A.S.: A data structure for the efficient Kronecker solution of GSPNs. In P. Buchholz editor, Proc. of the 8th International Workshop on Petri Nets and Performance Models (PNPM’99) Zaragoza, Spain, (1999) 22–31Google Scholar
  7. 7.
    Clark, G., Gilmore, S., Hillston, J., Thomas, N.: Experiences with the PEPA performance modelling tools. IEE Software. 146(1) (1999) 11–19CrossRefGoogle Scholar
  8. 8.
    Donatelli, S.: Superposed Generalised stochastic Petri nets: definition and efficient solution. Proc. of 15th Int. Conf. on Application and Theory of Petri Nets. In M. Silva Editor (1994)Google Scholar
  9. 9.
    El-Rayes, A.: Analysing performance of open queueing systems with stochastic process algebra. University of Birmingham (2000)Google Scholar
  10. 10.
    Fernandes, P., Plateau, B., Stewart, W.J.: Efficient vector-descriptor multiplications in stochastic automata networks. INRIA Report #2935. Anonymous ftp. http://www.ftp.inria.fr/INRIA/Publication/RR
  11. 11.
    Graham, A.: Kronecker products and matrix calculus with applications. Prentice Hall (1989)Google Scholar
  12. 12.
    Hermanns, H.: Interactive Markov Chains. PhD Thesis, Universität Erlangen-Nürnberg (1999)Google Scholar
  13. 13.
    Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi-terminal binary decision diagrams to represent and analyse continuous time Markov chains. Proc. 3rd Int. Workshop on Numerical Solution of Markov Chain, Zaragoza, Spain, (1999) 188–207Google Scholar
  14. 14.
    Hillston, J.: A Compositional approach to performance modeling. PhD Thesis, The University of Edinburgh (1994)Google Scholar
  15. 15.
    Hillston, J., Kloul, L.: From SAN to PEPA: A technology transfer. Submitted.Google Scholar
  16. 16.
    Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Transactions on Computers 31(9) (1982) 913–917CrossRefGoogle Scholar
  17. 17.
    Plateau, B.: On the stochastic structure of parallelism and synchronisation models for distributed algorithms. Proc. ACM Sigmetrics Conference on Measurement and Modelling of Computer Systems (1985)Google Scholar
  18. 18.
    Plateau, B.: De l’évolution du parallélisme et de lasync hronisation. PhD Thesis, Université de Paris-Sud, Orsay (1984)Google Scholar
  19. 19.
    Rettelbach, M., Siegle, M.: Compositional minimal semantics for the stochastic process algebra TIPP. Proc. of 2nd Workshop on Process Algebra and Performance Modelling (1994)Google Scholar
  20. 20.
    Sanders, W.H., Meyer, J.F.: Reduced base model construction methods for stochastic activity networks. IEEE Journal on Selected Areas in Communications 9(1) (1991) 25–36CrossRefGoogle Scholar
  21. 21.
    Stewart, W.J., Atif, K., Plateau, B.: The numerical solution of stochastic automata networks. European Journal of Operations Research 86(3) (1995) 503–525zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jane Hillston
    • 1
  • Leïla Kloul
    • 2
  1. 1.LFCSUniversity of EdinburghEdinburghScotland
  2. 2.PRiSMUniversité de VersaillesVersaillesFrance

Personalised recommendations