Advertisement

Quantifying the Dynamic Behavior of Process Algebras

  • Peter Buchholz
  • Peter Kemper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2165)

Abstract

The paper introduces a new approach to define process algebras with quantified transitions. A mathematical model is introduced which allows the definition of various classes of process algebras including the well known models of untimed, probabilistic and stochastic process algebras. For this general mathematical model a bisimulation equivalence is defined and it is shown that the equivalence is a congruence according to the operations of the algebra. By means of some examples it is shown that the proposed approach allows the definition of new classes of process algebras like process algebras over the max/plus or min/plus semirings.

Keywords

process algebras semiring bisimulation congruence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Agrawal, F. Baccelli, and R. Rajan. An algebra for queueing networks with time varying service. Research Report 3435, INRIA, 1998.Google Scholar
  2. 2.
    F. Baccelli, G. Cohen, G. Olsder, and J. Quadrat. Synchronization and Linearity. John Wiley and Sons, 1992.Google Scholar
  3. 3.
    F. Baccelli, B. Gaujal, and D. Simon. Analysis of preemptive periodic real time systems using the (max,plus) algebra. Research Report 3778, INRIA, 1999.Google Scholar
  4. 4.
    F. Baccelli and D. Hong. TCP is (max/+) linear. In Proc. SIGCOM 2000. ACM, 2000.Google Scholar
  5. 5.
    M. Bernado and R. Gorrieri. A tuturial of EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science, 202:1–54, 1998.CrossRefMathSciNetGoogle Scholar
  6. 6.
    D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation. Prentice Hall, 1989.Google Scholar
  7. 7.
    P. Buchholz. Die strukturierte Analyse Markovscher Modelle (in German). IFB 282. Springer, 1991.Google Scholar
  8. 8.
    P. Buchholz. Markovian process algebra: composition and equivalence. In [17].Google Scholar
  9. 9.
    P. Buchholz. Bisimulation for automata with transition costs. submitted, 2000.Google Scholar
  10. 10.
    C. S. Chang. Performance guarantess in communication networks. Springer, 1999.Google Scholar
  11. 11.
    R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: a semantics based tool for the verification of concurrent systems. ACM Transactions on Programming Languages and Systems, 15(1):36–72, 1993.CrossRefGoogle Scholar
  12. 12.
    P. R. D’Argenio, H. Hermanns, and J. P. Katoen. On generative parallel composition. In Proc. ProbMiv 98, Electronic Notes on Theor. Computer Sc., 21, 1999.Google Scholar
  13. 13.
    D. Gross and D. Miller. The randomization technique as a modeling tool and solution procedure for transient Markov processes. Operations Research, 32(2):926–944, 1984.MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Hansson. Time and probability for the formal design of distributed systems. Phd thesis, University of Uppsala, 1991.Google Scholar
  15. 15.
    H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic process algebras — between LOTOS and Markov chains. Computer Networks and ISDN Systems, 30(9/10):901–924, 1998.CrossRefGoogle Scholar
  16. 16.
    H. Hermanns and M. Rettelbach. Syntax, semantics, equivalences, and axioms for MTIPP. In [17]Google Scholar
  17. 17.
    U. Herzog and M. Rettelbach, eds. Proc. 2nd Work. Process Algebras and Performance Modelling Arbeitsberichte IMMD, Univ. Erlangen, Germany, No. 27, 1994.Google Scholar
  18. 18.
    J. Hillston. The nature of synchronisation. In [17].Google Scholar
  19. 19.
    J. Hillston. A compositional approach for performance modelling. Phd thesis, University of Edinburgh, Dep. of Comp. Sc., 1994.Google Scholar
  20. 20.
    J. Hillston. Compositional Markovian modelling using a process algebra. In W. J. Stewart, editor, Computations with Markov Chains, pages 177–196. Kluwer, 1995.Google Scholar
  21. 21.
    C. Hoare. Communicating sequential processes. Prentice Hall, 1985.Google Scholar
  22. 22.
    K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94: 1–28, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    R. Milner. Communication and concurrency. Prentice Hall, 1989.Google Scholar
  24. 24.
    D. Park. Concurrency and automata on infinite sequences. In Proc. 5th GI Conference on Theoretical Computer Science, pages 167–183. Springer LNCS 104, 1981.Google Scholar
  25. 25.
    R. van Glabbek, S. Smolka, B. Steffen, and C. Tofts. Reactive, generative and stratified models for probabilistic processes. In Proc. LICS’90, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Peter Buchholz
    • 1
  • Peter Kemper
    • 2
  1. 1.Fakultät für InformatikTU DresdenDresdenGermany
  2. 2.Informatik IVUniversität DortmundDortmundGermany

Personalised recommendations