Managing Time Consistency for Active Data Warehouse Environments

  • Robert M. Bruckner
  • A. M. Tjoa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2114)


Real-world changes are generally discovered delayed by computer systems. The typical update patterns for traditional data warehouses on an overnight or even weekly basis enlarge this propagation delay until the information is available to knowledge workers. Typically, traditional data warehouses focus on summarized data (at some level) rather than detail data. For active data warehouse environments, also detailed data about individual entities are required for checking the data conditions and triggering actions. Hence, keeping data current and consistent in that context is not an easy task. In this paper we present an approach for modeling conceptual time consistency problems and introduce a data model that deals with timely delays. It supports knowledge workers, to find out, why (or why not) an active system responded to a certain state of the data. Therefore the model enables analytical processing of detail data (enhanced by valid time) based on a knowledge state at a specified instant of time. All states that were not yet knowable to the system at that point in time are consistently ignored.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.
    Ballou, D.P., Tayi, G.K.: Enhancing Data Quality in Data Warehouse Environments. Communications of the ACM, Vol. 42(1): pp. 73–78, 1999.CrossRefGoogle Scholar
  2. 3.
    Bliujute, R., Saltenis, S., Slivinskas, G., Jensen, C.S.: Systematic Change Management in Dimensional Data Warehousing. Technical Report TR-23, TIMECENTER, January 1998.Google Scholar
  3. 4.
    Böhlen, M.H., Busatto, R., Jensen, C.S.: Point-Versus Interval-Based Temporal Data Models. Proc. of 14th Intl. Conf. ICDE, IEEE Comp. Society Press, pp. 192–201, Orlando, USA, 1998.Google Scholar
  4. 5.
    Dittrich, K.R., Gatziu, St.: Aktive Datenbanksysteme. Dpunkt. Verlag, Heidelberg, 2000.zbMATHGoogle Scholar
  5. 6.
    Dyreson, C.E., Evans, W.S., Hong, L., Snodgrass, R.T.: Efficiently Supporting Time Granularities. In IEEE Trans. on Knowledge and Data Engineer., Vol. 12(4): pp. 568–587, 2000.CrossRefGoogle Scholar
  6. 7.
    English, L.P.: Improving Data Warehouse and Business Information Quality. John Wiley and Sons, New York, 1999.Google Scholar
  7. 8.
    Inmon, W.H.: Building the Data Warehouse. John Wiley and Sons, New York, 1996.Google Scholar
  8. 9.
    Jensen, C.S., Dyreson, C.E., (eds): The Consensus Glossary of Temporal Database Concepts. In Temporal Databases: Research and Practice, Springer, LNCS 1399, pp. 367–405, 1998.Google Scholar
  9. 10.
    Jensen, C.S., Snodgrass, R.T.: Temporal Data Management. In IEEE Transactions on Knowledge and Data Engineering, Vol. 11(1): pp. 36–44, 1999.CrossRefGoogle Scholar
  10. 11.
    Roddick, J.F., Schrefl, M.: Towards an Accommodation of Delay in Temporal Active Databases. Proceedings of the 11th Australasien Database Conference (ADC2000), IEEE Computer Society, pp. 115–119, Canberra, Australia, 2000.Google Scholar
  11. 12.
    Rundensteiner, E.A., Koeller, A., Zhang, X.: Maintaining Data Warehouses over Changing Information Sources. Communications of the ACM, Vol. 43(6): pp. 57–62, 2000.CrossRefGoogle Scholar
  12. 13.
    Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-evolving data. In ACM Computing Surveys, Vol. 31(2): pp. 158–221, 1999.CrossRefGoogle Scholar
  13. 14.
    Schrefl, M., Thalhammer, T.: On Making Data Warehouses Active. Proceedings of the 2nd International Conference DaWaK, Springer, LNCS 1874, pp. 34–46, London, UK, 2000.Google Scholar
  14. 15.
    Torp, K., Jensen, C.S., Snodgrass, R.T.: Effective Timestamping in Databases. The VLDB Journal, Vol. 8,Issue 3-4, pp. 267–288, 2000.CrossRefGoogle Scholar
  15. 16.
    Wang, R.Y.: Total Data Quality Management. Communications of the ACM, Vol. 41(2): pp. 58–65, 1998.CrossRefGoogle Scholar
  16. 17.
    Westerman, P.: Data Warehousing: Using the Wal-Mart Model. Morgan Kaufmann Publishers, San Francisco, 2001.Google Scholar
  17. 18.
    Yang, J., Widom, J.: Temporal View Self-Maintenance. Proceedings of the 8th Intl. Conf. EDBT2000, Springer, LNCS 1777, pp. 395–412, Konstanz, Germany, 2000.Google Scholar
  18. 19.
    Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrahmanian, V.S., Zicari, R.: Advanced Database Systems. Morgan Kaufmann Publishers, San Francisco, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Robert M. Bruckner
    • 1
  • A. M. Tjoa
    • 1
  1. 1.Institute of Software TechnologyVienna University of TechnologyViennaAustria

Personalised recommendations