Skip to main content

Induction of Stable Models

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2157))

Included in the following conference series:

Abstract

In the line of previous work by S. Muggleton and C. Sakama, we extend the logical characterization of inductive logic programming, to normal logic programs under the stable models semantics. A logic program in this non-monotonic semantics can be contradictory or can have one or several models. We provide a complete characterization on the hypotheses solution to induction of this kind of programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bain and S. Muggleton. Nonmonotonic learning. In S. Muggleton, editor, Inductive Logic Programming, pages 145–161. Academic Press, 1992.

    Google Scholar 

  2. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In R. Kowalski and K. Bowen, editors, Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., pages 1070–1080, 1988.

    Google Scholar 

  3. W. Marek and M. Truszczynski. Nonmonotonic Logic-Context-Dependent Reasoning. Series Artificial Intelligence, Springer-Verlag, 1993.

    Google Scholar 

  4. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245–286, 1995.

    Article  Google Scholar 

  5. S. Muggleton. Completing inverse entailment. In Proc. of the 8th International Workshop on Inductive Logic Programming, ILP 98, LNAI 1446, pages 245–249, 1998.

    Google Scholar 

  6. Ilkka Niemelä and Patrick Simons. Smodels-an implementation of the stable model and well-founded semantics for normal logic programs. In Proc. of the 4th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 97, LNAI 1265, pages 420–429, 1997.

    Google Scholar 

  7. C. Sakama. Some properties of inverse resolution in normal logic programs. In Proc. of the 9th International Workshop on Inductive Logic Programming, ILP 99, LNAI 1634, pages 279–290, 1999.

    Google Scholar 

  8. C. Sakama. Inverse entailment in nonmonotonic logic programs. In Proc. of the 10th International Conference on Inductive Logic Programming, ILP 00, LNAI 1866, pages 209–224, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Otero, R.P. (2001). Induction of Stable Models. In: Rouveirol, C., Sebag, M. (eds) Inductive Logic Programming. ILP 2001. Lecture Notes in Computer Science(), vol 2157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44797-0_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44797-0_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42538-0

  • Online ISBN: 978-3-540-44797-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics