Schema Design and Query Processing in a Federated Multimedia Database System

  • Henrike Berthold
  • Klaus Meyer-Wegener
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2172)


To build information systems today, a multimedia database system is needed which supports both structured data and media data. Because these two kinds of data differ significantly in their characteristics, the extension of traditional databases towards the support of media data is a very tedious task. As an alternative, the intelligent coupling of specialized component systems, i.e. traditional databases, media storage systems, and media retrieval systems, can be used to build a multimedia database system. In this paper, a global-schema construction methodology for a federation of these component systems is presented. It allows the unrestricted extension of the global schema. Furthermore, a schemaindependent query processing module for global schemas constructed with this methodology is designed. It can handle the given distribution pattern. In addition, it explores the functionality of media retrieval systems concerning search functions and result restrictions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bancilhon, C. Delobel, and P. C. Kanellakis, editors. Building an Object-Oriented Database System, The Story of O2. Morgan Kaufmann, 1992. 297Google Scholar
  2. 2.
    H. Berthold. A Federated Multimedia Database System. PhD thesis, Dresden University of Technology, Germany, 2001. In preparation. 286, 289, 296, 297Google Scholar
  3. 3.
    W. J. Bolosky et al. The Tiger Video Fileserver. In Proc. of 6th Int. Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV 96), 1996. 287Google Scholar
  4. 4.
    M. Carey et al. Towards Heterogenous Multimedia Information Systems: The Garlic Approach. In Proc. of the Fifth International Workshop on Research Issues in Data Engineering(RIDE): Distributed Object Management, 1995. 288Google Scholar
  5. 5.
    R. Cattell et al., editors. The Object Database Standard: ODMG 2.0. Morgan Kaufmann, 1997. 289Google Scholar
  6. 6.
    S. Chawathe et al. The TSIMMIS Project: Integration of Heterogeneous Information Sources. In Proc. of IPSJ Conference, 1994. 288Google Scholar
  7. 7.
    W. F. Cody et al. Querying Multimedia Data from Multiple Repositories by Content: the GARLIC Project. In Proc. of IFIP 2.6 Third Working Conference on Visual Database Systems (VDB-3), 1995. 288Google Scholar
  8. 8.
    L. Fegaras and D. Maier. Towards an Effective Calculus for Object Query Languages. In Proc. of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose, California, May 22-25, 1995, pages 47–58. ACM Press, 1995. 295Google Scholar
  9. 9.
    M. Flickner, H. S. Sawhney, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by Image and Video Content: The QBIC System. IEEE Computer, 28(9):23–32, 1995. 287Google Scholar
  10. 10.
    T. Grust. Comprehending Queries. PhD thesis, Universität Konstanz, 1999. 295, 297, 298Google Scholar
  11. 11.
    S. Hollfelder et al. Transparent Integration of Continuous Media Support into a Multimedia DBMS. In Proc. of Int. Workshop on Issues and Applications of Database Technology (IADT’98), 1998. 288Google Scholar
  12. 12.
    Informix Corp. Informix Video Foundation DataBlade Module Users’s Guide, 1998. 288Google Scholar
  13. 13.
    Informix Corp. Excalibur Image DataBlade Module User’s Guide, 1999. 287, 288Google Scholar
  14. 14.
    M. Löhr and T. C. Rakow. Audio support for an object-oriented database management system. Multimedia Systems, 3(5,6):286–297, 1995. 287CrossRefGoogle Scholar
  15. 15.
    U. Marder and G. Robbert. The KANGAROO Project. In Proc. of the Third Int. Workshop on Multimedia Information Systems (MIS’97), 1997. 287Google Scholar
  16. 16.
    C. Martin, P. Narayan, B. özden, R. Rastogi, and A. Silberschatz. The Fellini Multimedia Storage System. Journal of Digital Libraries, 1997. 287
  17. 17.
    W. Meng and C. Yu. Query Processing in Multidatabase Systems. In W. Kim, editor, Modern database systems: the object model, interoperability, and beyond. Addison Wesley, 1995. 294Google Scholar
  18. 18.
    E. Pitoura, O. A. Bukhres, and A. K. Elmagarmid. Object Orientation in Multidatabase Systems. ACM Computing Surveys, 27(2):141–195, 1995. 289CrossRefGoogle Scholar
  19. 19.
    H. Riedel and M. H. Scholl. A Formalization of ODMG Queries. In Proc. of the IFIP WG 2.6 Working Conference on Database Semantics (DS-7), Leysin, Switzerland, 1997. 289Google Scholar
  20. 20.
    A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Distributed, Heterogeneous, and Autonomous Databases. ACM TODS, 22(3), 1990. 285Google Scholar
  21. 21.
    K. Stolze. SQL/MM Part 5: Still Image-The Standard and Implementation Aspects. In Proc. of Datenbanksysteme in Büro, Technik und Wissenschaft (BTW), 9. GI-Fachtagung, Oldenburg, 7.-9. März 2001, Informatik Aktuell. Springer, 2001. 288, 290Google Scholar
  22. 22.
    M. Stonebraker and P. Brown. Object-Relational DBMSs Tracking the Next Great Wave. Morgan Kaufmann, 1999. 288Google Scholar
  23. 23.
    V. Subrahmanian, S. Adali, A. Brink, J. J. Lu, A. Rajput, T. J. Rogers, R. Ross, and C. Ward. HERMES: A Heterogeneous Reasoning and Mediator System, 1994. 288

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Henrike Berthold
    • 1
  • Klaus Meyer-Wegener
    • 1
  1. 1.Computer Science DepartmentDresden University of TechnologyDresdenGermany

Personalised recommendations