Skip to main content

A Hierarchical Markov Random Field Model for Figure-Ground Segregation

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2134))

Abstract

To segregate overlapping objects into depth layers requires the integration of local occlusion cues distributed over the entire image into a global percept. We propose to model this process using hierarchical Markov random field (HMRF), and suggest a broader view that clique potentials in MRF models can be used to encode any local decision rules. A topology-dependent multiscale hierarchy is used to introduce long range interaction. The operations within each level are identical across the hierarchy. The clique parameters that encode the relative importance of these decision rules are estimated using an optimization technique called learning from rehearsals based on 2-object training samples. We find that this model generalizes successfully to 5-object test images, and that depth segregation can be completed within two traversals across the hierarchy. This computational framework therefore provides an in-teresting platform for us to investigate the interaction of local decision rules and global representations, as well as to reason about the rationales underlying some of recent psychological and neurophysiological findings related to figure-ground segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. F. Abbott. Integrating with action potentials. Neuron, 26:3–4, 2000.

    Article  Google Scholar 

  2. P. Belhumeur. A Bayesian approach to binocular stereopsis. International Journal of Computer Vision, 19(3):237–260, 1996.

    Article  Google Scholar 

  3. J. Besag. Efficiency of pseudo-likelihood estimation of simple Gaussian fields. Biometrika, 64:616–8, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, MA, 1987.

    Google Scholar 

  5. H. Derin and H. Elliott. Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(1):39–55, 1987.

    Google Scholar 

  6. X. Descombes, R. D. Morris, J. Zerubia, and M. Berthod. Estimation of Markov random fields prior parameters using Markov chain Monte Carlo maximum likelihood. IEEE Transactions on Image Processing, 8(7):954–62, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. C. Dobbins, R. M. Jeo, J. Fiser, and J. M. Allman. Distance modulation of neural activity in the visual cortex. Science, 281:552–5, 1998.

    Article  Google Scholar 

  8. D. Geiger and K. Kumaran. Visual organization of illusory surfaces. In European Conference on Computer Vision, Cambridge, England, April 1996.

    Google Scholar 

  9. D. Geiger, H. kuo Pao, and N. Rubin. Salient and multiple illusory surfaces. In IEEE Conference on Computer Vision and Pattern Recognition. 1998.

    Google Scholar 

  10. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–41, 1984.

    MATH  Google Scholar 

  11. S. Grossberg and E. Mingolla. Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. Psychological Review, 92:173–211, 1985.

    Article  Google Scholar 

  12. F. Heitger and R. von der Heydt. A computational model of neural contour processing: Figure-ground segregation and illusory contours. In International Conference on Computer Vision, pages 32–40. 1993.

    Google Scholar 

  13. T. H. Hong, K. A. Narayanan, S. Peleg, A. Rosenfeld, and T. Silberberg. Image smoothing and segmentation by multiresolution pixel linking: further experiments and extensions. IEEE Transactions on Systems, Man, and Cybernetics, 12:611–22, 1982.

    Article  Google Scholar 

  14. T. H. Hong and A. Rosenfeld. Compact region extraction using weighted pixel linking in a pyramid. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(2):222–9, 1984.

    Google Scholar 

  15. G. Kanizsa. Organization in vision. Praeger Publishers, 1979.

    Google Scholar 

  16. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, pages 321–331, 1988.

    Google Scholar 

  17. J. J. Knierim and D. van Essen. Neuronal responses to static texture patterns in area v1 of the alert macaque monkey. Journal of Neurophysiology, 67(4):961–80, 1992.

    Google Scholar 

  18. C. Koch. Computation and the single neuron. Nature, 385:207–210, 1997.

    Article  Google Scholar 

  19. V. Lamme. The neurophysiology of figure-ground segregation in primary visual cortex. Jounral of neuroscience, 10:649–69, 1995.

    Google Scholar 

  20. T. S. Lee, D. Mumford, R. Romero, and V. Lamme. The role of primary visual cortex in higher level vision. Vision Research, 38:2429–54, 1998.

    Article  Google Scholar 

  21. S. Z. Li. Markov random field modeling in computer vision. Springer-Verlag, 1995.

    Google Scholar 

  22. S. Madarasmi, T.-C. Pong, and D. Kersten. Illusory contour detection using MRF models. In IEEE International Conference on Neural Networks, volume 7, pages 4343–8. 1994.

    Google Scholar 

  23. H. Markram, J. Lubke, M. Frotscher, and B. Sakmann. Regulartion of synaptic efficacy by coincidence of postsynpatic APS and EPSPs. Science, 275:213–215, 1997.

    Article  Google Scholar 

  24. D. Mumford. Elastica and computer vision. In C. L. Bajaj, editor, Algebraic geometry and its applications. Springer-Verlag, 1993.

    Google Scholar 

  25. D. Mumford. The bayesian rationale for energy functionals. In B. Romeny, editor, Geometry-driven diffusion in computer vision, pages 141–53. Kluwer Academic Publishers, 1994.

    Google Scholar 

  26. K. Nakayama and S. Shimojo. Experiencing and perceiving visual surfaces. Science, 257:1357–63, 1992.

    Article  Google Scholar 

  27. K. Nakayama, S. Shimojo, and G. H. Silverman. Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects. Perception, 18:55–68, 1989.

    Article  Google Scholar 

  28. M. Nitzberg. Depth from Overlap. PhD thesis, The Division of Applied Sciences, Harvard University, 1991.

    Google Scholar 

  29. M. A. Paradiso and K. Nakayama. Brightness perception and filling-in. Vision Research, 31(7/8):1221–36, 1991.

    Article  Google Scholar 

  30. J. Shi and J. Malik. Normalized cuts and image segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 731–7, June 1997.

    Google Scholar 

  31. D. Terzopoulos. Image analysis using multigrid relaxation methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(2):129–39, 1986.

    Article  Google Scholar 

  32. S. Ullman. Filling-in the gaps: the shape of subjective contours and a model for their generation. Biological Cybernetics, 25:1–6, 1976.

    MathSciNet  Google Scholar 

  33. L. R. Williams and D. W. Jacobs. Stochastic completion fields: A neural model of illusory contour shape and salience. Neural Computation, 9(4):837–58, 1997.

    Article  Google Scholar 

  34. S. X. Yu and J. Shi. Segmentation with pairwise attraction and repulsion. International Conference on Computer Vision, 2001.

    Google Scholar 

  35. J. Zhang. The mean field theory in EM procedures for Markov random fields. IEEE Transactions on Image Processing, 40(10):2570–83, 1992.

    MATH  Google Scholar 

  36. H. Zhou, H. Friedman, and R. von der Heydt. Coding of border ownership in monkey visual cortex. Journal of Neuroscience, 20(17):6594–611, 2000.

    Google Scholar 

  37. S. C. Zhu, T. S. Lee, and A. Yuille. Region competition: unifying snakes, region-growing and mdl for image segmentation. Proceedings of the Fifth International Conference in Computer Vision, pages 416–425, 1995.

    Google Scholar 

  38. S. C. Zhu, Y. N. Wu, and D. Mumford. Filters, random field and maximum entropy: — towards a unified theory for texture modeling. International Journal of Computer Vision, 27(2):1–20, 1998.

    Article  Google Scholar 

  39. S. C. Zhu and A. Yuille. Unifying snake/balloons, region growing and Bayes/MDL/Energy for multi-band image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9), 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, S.X., Lee, T.S., Kanade, T. (2001). A Hierarchical Markov Random Field Model for Figure-Ground Segregation. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-44745-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42523-6

  • Online ISBN: 978-3-540-44745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics