Skip to main content

Gabor Feature Space Diffusion via the Minimal Weighted Area Method

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2001)

Abstract

Gabor feature space is elaborated for representation, processing and segmentation of textured images. As a first step of preprocessing of images represented in this space, we introduce an algorithm for Gabor feature space denoising. It is a geometric-based algorithm that applies diffusion-like equation derived from a minimal weighted area functional, introduced previously and applied in the context of stereo reconstruction models [6,12]. In a previous publication we have already demonstrated how to generalize the intensity-based geodesic active contours model to the Gabor spatial-feature space. This space is represented, via the Bel-trami framework, as a 2D Riemannian manifold embedded in a 6D space. In this study we apply the minimal weighted area method to smooth the Gabor space features prior to the application of the geodesic active contour mechanism. We show that this “Weighted Beltrami” approach preserves edges better than the original Beltrami diffusion. Experimental results of this feature space denoising process and of the geodesic active contour mechanism applied to the denoised feature space are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Brodatz, Textures: A photographic album for Artists and Designers, New York, NY, Dover, 1996.

    Google Scholar 

  2. V. Caselles and R. Kimmel and G. Sapiro, “Geodesic Active Contours”, International Journal of Computer Vision, 22(1), 1997, 61–97.

    Article  MATH  Google Scholar 

  3. R. Conners and C. Harlow “A Theoretical Comparison of Texture Algorithms “IEEE Transactions on PAMI, 2, 1980, 204–222.

    MATH  Google Scholar 

  4. G.R. Cross and A.K. Jain, “Markov Random Field Texture Models“ IEEE Transactions on PAMI, 5, 1983, 25–39.

    Google Scholar 

  5. J.G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters “, J. Opt. Soc. Amer. 2(7), 1985, 1160–1169.

    Google Scholar 

  6. O. Faugeras and R. Keriven, “Variational Principles, surface evolution PDE’s, level set methods, and the stereo problem ” ,IEEE Trans. on Image Processing, 7(3), (1998) 336–344.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Gabor “Theory of communication “J. IEEE, 93, 1946, 429–459.

    Google Scholar 

  8. S. Geman and D. Geman “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images“, IEEE Transactions on PAMI, 6, 1984, 721–741.

    MATH  Google Scholar 

  9. B. Julesz “Texton Gradients: The Texton Theory Revisited“, Biol Cybern, 54, (1986) 245–251.

    Article  MATH  Google Scholar 

  10. M. Kaas, A. Witkin and D. Terzopoulos, “Snakes: Active Contour Models“, International Journal of Computer Vision, 1, 1988, 321–331.

    Article  Google Scholar 

  11. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi, “Gradient Flows and Geometric Active Contour Models”, Proceedings ICCV’95, Boston, Massachusetts, 1995, 810–815.

    Google Scholar 

  12. R. Kimmel, “3D Shape Reconstruction from Autostereograms and Stereo”, Special issue on PDEs in Image Processing, Computer Vision, and Computer Graphics, Journal of Visual Communication and Image Representation. In press.

    Google Scholar 

  13. R. Kimmel, N. Sochen and R. Malladi, “On the geometry of texture”, Proceedings of the 4th International conference on Mathematical Methods for Curves and Surfaces, St. Malo, 1999.

    Google Scholar 

  14. R. Kimmel and N. Sochen. “Orientation Diffusion or How to Comb a Porcupine?“, Special issue on PDEs in Image Processing, Computer Vision, and Computer Graphics, Journal of Visual Communication and Image Representation. In press.

    Google Scholar 

  15. T.S. Lee, “Image Representation using 2D Gabor-Wavelets“, IEEE Transactions on PAMI, 18(10), 1996, 959–971.

    Google Scholar 

  16. S. Marcelja, “Mathematical description of the response of simple cortical cells”, J. Opt. Soc. Amer., 70, 1980, 1297–1300.

    Article  MathSciNet  Google Scholar 

  17. J. Morlet, G. Arens, E. Fourgeau and D. Giard, “Wave propagation and sampling theory-part 2: sampling theory and complex waves”, Geophysics, 47(2), 1982, 222–236.

    Article  Google Scholar 

  18. M. Porat and Y.Y. Zeevi, “The generalized Gabor scheme of image representation in biological and machine vision“, IEEE Transactions on PAMI, 10(4), 1988, 452–468.

    MATH  Google Scholar 

  19. M. Porat and Y.Y. Zeevi, “Localized texture processing in vision: Analysis and synthesis in the gaborian space“, IEEE Transactions on Biomedical Engineering, 36(1), 1989, 115–129.

    Article  Google Scholar 

  20. S.J. Osher and J.A. Sethian, “Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations“, J of Computational Physics, 79, 1988, 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Sagiv, N. Sochen, and Y.Y. Zeevi, “Gabor Space Geodesic Active Contours”, G. Sommer, Y.Y. Zeevi (Eds.), Algebraic Frames for the Perception-Action Cycle, Lecture Notes in Computer Science, Vol. 1888, Springer, Berlin, 2000.

    Chapter  Google Scholar 

  22. N. Sochen, R. Kimmel and R. Malladi, “A general framework for low level vision”, IEEE Trans. on Image Processing, 7, (1998) 310–318.

    Article  MATH  MathSciNet  Google Scholar 

  23. S.C. Zhu, Y.N. Wu and D.B. Mumford, “Equivalence of Julesz ensembles and FRAME models“, International Journal of Computer Vision, 38(3), 2000, 247–265.

    Article  MATH  Google Scholar 

  24. M. Zibulski and Y.Y. Zeevi, “Analysis of multiwindow Gabor-type schemes by frame methods“, Applied and Computational Harmonic Analysis, 4, 1997, 188–221.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sagiv, C., Sochen, N.A., Zeevi, Y.Y. (2001). Gabor Feature Space Diffusion via the Minimal Weighted Area Method. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-44745-8_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42523-6

  • Online ISBN: 978-3-540-44745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics