Skip to main content

A Complementary Pivoting Approach to Graph Matching

  • Conference paper
  • First Online:
  • 1382 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2134))

Abstract

Graph matching is a problem that pervades computer vision and pattern recognition research. During the past few decades, two radically distinct approaches have been pursued to tackle it. The first views the matching problem as one of explicit search in state-space. A classical method within this class consists of transforming it in the equivalent problem of finding a maximal clique in a derived “association graph.” In the second approach, the matching problem is viewed as one of energy minimization. Recently, we have provided a unifying framework for graph matching which is centered around a remarkable result proved by Motzkin and Straus in the mid-sixties. This allows us to formulate the maximum clique problem in terms of a continuous quadratic optimization problem. In this paper we propose a new framework for graph matching based on the linear complementarity problem (LCP) arising from the Motzkin-Straus program. We develop a pivoting-based technique to find a solutions for our LCP which is a variant of Lemke’s well-known method. Preliminary experiments are presented which demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. P. Ambler and et al. A versatile computer-controlled assembly system. In Proc. 3rd Int. J. Conf. Artif. Intell., pages 298–307. Stanford, CA, 1973.

    Google Scholar 

  2. H. G. Barrow and R. M. Burstall. Subgraph isomorphism, matching relational structures and maximal cliques. Inform. Process. Lett., 4(4):83–84, 1976.

    Article  MATH  Google Scholar 

  3. M. Bartoli, M. Pelillo, K. Siddiqi, and S. W. Zucker. Attributed tree homomor-phism using association graphs. In Proc. 15th Int. Conf. Pattern Recognition, volume 2, pages 133–136. IEEE Computer Society Press, 2000.

    Article  Google Scholar 

  4. R. C. Bolles and R. A. Cain. Recognizing and locating partially visible objects: The locus-feature-focus method. Int. J. Robotics Res., 1:57–82, 1982.

    Article  Google Scholar 

  5. I. M. Bomze. Evolution towards the maximum clique. J. Global Optim., 10:143–164, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. M. Bomze. On standard quadratic optimization problems. J. Global Optim., 13:369–387, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  7. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization-suppl. vol. A, pages 1–74. Kluwer Academic Publishers, 1999.

    Google Scholar 

  8. H. Bunke. Recent developments in graph matching. In Proc. 15th Int. Conf. Pattern Recognition, volume 2, pages 117–124. IEEE Computer Society Press, 2000.

    Article  Google Scholar 

  9. R. W. Cottle, J. Pang, and R. E. Stone. The Linear Complementarity Problem. Academic Press, Boston, MA, 1992.

    MATH  Google Scholar 

  10. L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana. Continuous characterizations of the maximum clique problem. Math. Oper. Res., 22:754–768, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(4):377–388, 1996.

    Article  Google Scholar 

  12. R. Horaud and T. Skordas. Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Pattern Analysis and Machine Intelligence, 11:1168–1180, 1989.

    Article  Google Scholar 

  13. S. Z. Li. Matching: Invariant to translations, rotations, and scale changes. Pattern Recognition, 25:583–594, 1992.

    Article  MathSciNet  Google Scholar 

  14. A. Massaro, M. Pelillo, and I. M. Bomze. A complementary pivoting approach to the maximum weight clique problem. SIAM J. Optim., in press.

    Google Scholar 

  15. B. Messmer and H. Bunke. A new algorithm for error tolerant subgraph isomorphism. IEEE Trans. Pattern Anal. Machince Intell., 20:493–505, 1998.

    Article  Google Scholar 

  16. T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math., 17(4):533–540, 1965.

    MATH  MathSciNet  Google Scholar 

  17. M. Pelillo. A unifying framework for relational structure matching. In Proc. 14th Int. Conf. Pattern Recognition, pages 1316–1319. IEEE Computer Society Press, 1998.

    Google Scholar 

  18. M. Pelillo. Replicator equations, maximal cliques, and graph isomorphism. Neural Computation, 11:1933–1955, 1999.

    Article  Google Scholar 

  19. M. Pelillo. Replicator dynamics in combinatorial optimization. In P. M. Parda-los and C. A. Floudas, editors, Encyclopedia of Optimization. Kluwer Academic Publishers, Boston, MA, 2001. in press.

    Google Scholar 

  20. M. Pelillo and A. Jagota. Feasible and infeasible maxima in a quadratic program for the maximum clique problem. J. Artif. Neural Networks, 2(4):411–420, 1995.

    Google Scholar 

  21. M. Pelillo, K. Siddiqi, and S. W. Zucker. Matching hierarchical structures using association graphs. IEEE Trans. Pattern Anal. Machince Intell., 21(11):1105–1120, 1999.

    Article  Google Scholar 

  22. M. Pelillo, K. Siddiqi, and S. W. Zucker. Many-to-many matching of attributed trees using association graphs and game dynamics. In C. Arcelli, L. P. Cordella, and G. Sanniti di Baja, editors, Visual Form 2001, pages 583–593. Springer, Berlin, 2001.

    Chapter  Google Scholar 

  23. A. Rangarajan and E. Mjolsness. A lagrangian relaxation network for graph matching. IEEE Trans. Neural Networks, 7:1365–1381, 1996.

    Article  Google Scholar 

  24. L. G. Shapiro and R. M. Haralick. Structural descriptions and inexact matching. IEEE Trans. Pattern Anal. Machine Intell., 3:504–519, 1981.

    Google Scholar 

  25. W.-H. Tsai and K.-S. Fu. Subgraph error-correcting isomorphisms for syntactic pattern recognition. IEEE Trans. Syst. Man Cybern., 13:48–62, 1983.

    MATH  MathSciNet  Google Scholar 

  26. R. C. Wilson and E. R. Hancock. Structural matching by discrete relaxation. IEEE Trans. Pattern Anal. Machince Intell., 19(6):634–648, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Massaro, A., Pelillo, M. (2001). A Complementary Pivoting Approach to Graph Matching. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-44745-8_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42523-6

  • Online ISBN: 978-3-540-44745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics