Skip to main content

A Maximum Likelihood Framework for Grouping and Segmentation

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2134))

Abstract

This paper presents an iterative maximum likelihood frame work for perceptual grouping. We pose the problem of perceptual grouping as one of pairwise relational clustering. The method is quite generic and can be applied to a number of problems including region segmentation and line-linking. The task is to assign image tokens to clusters in which there is strong relational affinity between token pairs. The parameters of our model are the cluster memberships and the link weights between pairs of tokens. Commencing from a simple probability distribution for these parameters, we show how they may be estimated using an EM-like algorithm. The cluster memberships are estimated using an eigendecomposition method. Once the cluster memberships are to hand, then the updated link-weights are the expected values of their pairwise products. The new method is demonstrated on region segmentation and line-segment grouping problems where it is shown to outperform a non-iterative eigenclustering method.

Supported by CONACYT, under grant No. 146475/151752.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. G. Bors and I. Pitas. Optical flow estimation and moving object segmentation based on Median RBF network. IEEE Trans. on Image Processing, 7(5):693–702, 1998.

    Article  Google Scholar 

  2. J. S. Bridle. Training stochastic model recognition algorithms can lead to maximum mutual information estimation of parameters. In NIPS 2, pages 211–217, 1990.

    Google Scholar 

  3. J. S. Shyn C. H. Hsieh, P. C. Lu and E. H. Lu. Motion estimation algorithm using inter-block correlation. IEE Electron. Lett., 26(5):276–277, 1990.

    Article  Google Scholar 

  4. Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

    Google Scholar 

  5. D. Crevier. A probabilistic method for extracting chains of collinear segments. Image and Vision Computing, 76(1):36–53, 1999.

    Article  Google Scholar 

  6. W. Dickson. Feature grouping in a hierarchical probabilistic network. Image and Vision Computing, 9(1):51–57, 1991.

    Article  Google Scholar 

  7. G. Guy and G. Medioni. Inferring global perceptual contours from local features. International Journal of Computer Vision, 20(1/2):113–133, 1996.

    Article  Google Scholar 

  8. T. Hofmann and M. Buhmann. Pairwise data clustering by deterministic annealing. IEEE Tansactions on Pattern Analysis and Machine Intelligence, 19(1):1–14, 1997.

    Article  Google Scholar 

  9. J. M. Rehg I. J. Cox and S. Hingorani. A bayesian multiple-hypothesis approach to edge grouping and contour segmentation. International Journal of Computing and Vision, 11(1):5–24, 1993.

    Article  Google Scholar 

  10. J. A. F. Leite and E. R. Hancock. Iterative curve organisation with the em algorithm. Pattern Recognition Letters, 18:143–155, 1997.

    Article  Google Scholar 

  11. R. Castan o and S. Hutchinson. A probabilistic approach to perceptual grouping. Computer Vision and Image Understanding, 64(3):339–419, 1996.

    Article  Google Scholar 

  12. P. Parent and S. Zucker. Trace inference, curvature consistency and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8):823–839, 1989.

    Article  Google Scholar 

  13. P. Perona and W. T. Freeman. Factorization approach to grouping. In Proc. ECCV, pages 655–670, 1998.

    Google Scholar 

  14. S. Sarkar and K. L. Boyer. Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors. Computer Vision and Image Understanding, 71(1):110–136, 1998.

    Article  Google Scholar 

  15. A. Shashua and S. Ullman. Structural saliency: The detection of globally salient structures using a locally connected network. In Proc. 2nd Int. Conf. in Comp. Vision, pages 321–327, 1988.

    Google Scholar 

  16. J. Shi and J. Malik. Normalized cuts and image segmentations. In Proc. IEEE CVPR, pages 731–737, 1997.

    Google Scholar 

  17. Y. Weiss. Segmentation using eigenvectors: A unifying view. In IEEE International Conference on Computer Vision, pages 975–982, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robles-Kelly, A., Hancock, E.R. (2001). A Maximum Likelihood Framework for Grouping and Segmentation. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-44745-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42523-6

  • Online ISBN: 978-3-540-44745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics