Skip to main content

Path Based Pairwise Data Clustering with Application to Texture Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2134))

Abstract

Most cost function based clustering or partitioning methods measure the compactness of groups of data. In contrast to this picture of a point source in feature space, some data sources are spread out on a low-dimensional manifold which is embedded in a high dimensional data space. This property is adequately captured by the criterion of connectedness which is approximated by graph theoretic partitioning methods.

We propose in this paper a pairwise clustering cost function with a novel dissimilarity measure emphasizing connectedness in feature space rather than compactness. The connectedness criterion considers two objects as similar if there exists a mediating intra cluster path without an edge with large cost. The cost function is optimized in a multi-scale fashion. This new path based clustering concept is applied to segment textured images with strong texture gradients based on dissimilarities between image patches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B, 48:25–37, 1986.

    MathSciNet  Google Scholar 

  2. M. Blatt, M. Wiesman, and E. Domany. Data clustering using a model granular magnet. Neural Computation, 9:1805–1842, 1997.

    Article  Google Scholar 

  3. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, 1989.

    Google Scholar 

  4. I. Fogel and D. Sagi. Gabor filters as texture discriminators. Biological Cybernetics, 61:103–113, 1989.

    Article  Google Scholar 

  5. A. L. N. Fred and J. M. N. Leitão. Clustering under a hypothesis of smooth dissimilarity increment. In Proceedings of the 15th International Conference on Pattern Recognition, volume 2, pages 190–194. IEEE Computer Society, 2000.

    Google Scholar 

  6. J. J. Gibson. The Ethological Approach to Visual Perception. Houghton Mifflin, 1979.

    Google Scholar 

  7. T. Hofmann and J. M. Buhmann. Pairwise data clustering by deterministic annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1):1–14, 1997.

    Article  Google Scholar 

  8. T. Hofmann, J. Puzicha, and J. M. Buhmann. Unsupervised texture segmentation in a deterministic annealing framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):803–818, 1998.

    Article  Google Scholar 

  9. A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, NJ 07632, 1988.

    MATH  Google Scholar 

  10. A. Jain and F. Farrokhnia. Unsupervised texture segmentation using gabor filters. Pattern Recognition, 24(12):1167–1186, 1991.

    Article  Google Scholar 

  11. S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983.

    Google Scholar 

  12. H. Klock and J. M. Buhmann. Data visualization by multidimensional scaling: A deterministic annealing approach. Pattern Recognition, 33(4):651–669, 1999. partially published in EMMCVPR ‘97.

    Article  Google Scholar 

  13. G. Lance and W. Williams. A general theory of classification sorting strategies: Ii. clustering systems. Computer Journal, 10:271–277, 1969.

    Article  Google Scholar 

  14. T. L. Lee, D. Mumford, and A. Yuille. Texture segmentation by minimizing vector-valued energy functionals: The coupled-membrane model. In Proceedings of the European Conference on Computer Vision (ECCV‘92), volume 588 of LNCS, pages 165–173. Springer Verlag, 1992.

    Google Scholar 

  15. J. Puzicha and J. M. Buhmann. Multiscale annealing for unsupervised image segmentation. Computer Vision and Image Understanding, 76(3):213–230, 1999.

    Article  Google Scholar 

  16. J. Puzicha, T. Hofmann, and J. M. Buhmann. Histogram clustering for unsupervised segmentation and image retrieval. Pattern Recognition Letters, 20:899–909, 1999.

    Article  Google Scholar 

  17. J. Puzicha, T. Hofmann, and J. M. Buhmann. A theory of proximity based clustering: Structure detection by optimization. Pattern Recognition, 2000.

    Google Scholar 

  18. J. Puzicha, Y. Rubner, C. Tomasi, and J. M. Buhmann. Empirical evaluation of dissimilarity measures for color and texture. In Proceedings of the International Conference on Computer Vision (ICCV) ‘99, pages 1165–1173, 1999.

    Google Scholar 

  19. K. Rose, E. Gurewitz, and G. Fox. A deterministic annealing approach to clustering. Pattern Recognition Letters, 11:589–594, 1990.

    Article  MATH  Google Scholar 

  20. N. Tishby and N. Slonim. Data clustering by markovian relaxation and the information bottleneck method. In Advances in Neural Information Processing Sytems, volume 13. NIPS, 2001. to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, B., Zöller, T., Buhmann, J.M. (2001). Path Based Pairwise Data Clustering with Application to Texture Segmentation. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44745-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42523-6

  • Online ISBN: 978-3-540-44745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics