Skip to main content

Multiseeded Fuzzy Segmentation on the Face Centered Cubic Grid

  • Conference paper
  • First Online:
Advances in Pattern Recognition — ICAPR 2001 (ICAPR 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2013))

Included in the following conference series:

Abstract

Fuzzy connectedness has been effectively used to segment out objects in volumes containing noise and/or shading. Multiseeded fuzzy segmentation is a generalized approach that produces a unique simultaneous segmentation of multiple objects. Fcc (face centered cubic) grids are grids formed by rhombic dodecahedral voxels that can be used to represent volumes with fewer elements than a normal cubic grid. Tomographic reconstructions (PET and CT) are used to evaluate the accuracy and speed of the algorithm.

This research is supported by NIH Grant HL28438 (BMC, EG and GTH), NFS Grant DMS96122077 (GTH), CAPES-BRASÍLIA-BRAZIL (BMC) and CONACyT-Mexico (EG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dellepiane S.G., Fontana F., and Vernazza G.L. Nonlinear image labeling for multivalued segmentation. IEEE Trans. Image Process. 1996; 5:429–446

    Article  Google Scholar 

  2. Udupa J.K., Wei L., Samarasekera S., Miki Y., van Buchem M.A., and Grossman R.I. Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE Trans. Med. Imag. 1997; 16:598–609

    Article  Google Scholar 

  3. Moghaddam H.A. and Lerallut J.F. Volume visualization of the heart using MRI 4D cardiac images. J. Comput. Inform. Tech. 1998; 6:215–228

    Google Scholar 

  4. Carvalho B.M., Gau C.J., Herman G.T., and Kong T.Y. Algorithms for fuzzy segmentation. Pattern Anal. Appl. 1999; 2:73–81

    Article  Google Scholar 

  5. Rosenfeld A. Fuzzy digital topology. Inform. and Control 1979; 40:76–87

    Article  MATH  MathSciNet  Google Scholar 

  6. Herman G.T. and Carvalho B.M. Multiseeded segmentation using fuzzy connectedness. IEEE Trans. Pattern Anal. Mach. Intell., to appear

    Google Scholar 

  7. Udupa J.K. and Samarasekera S. Fuzzy connectedness and object definition: Theory, algorithms and applications in image segmentation. Graph. Models Image Proc. 1996; 58:246–261

    Google Scholar 

  8. Herman G.T. Geometry of Digital Spaces. Birkhäuser, Boston, MA, 1998

    MATH  Google Scholar 

  9. Udupa J.K., Saha P.K., and Lotufo R.A. Fuzzy connected object definition in images with respect to co-objects. In: K.M. Hanson (ed) Image Processing, volume 3661 of Proc. SPIE, 1999, pp 236–245

    Google Scholar 

  10. Cormen T.H., Leiserson C.E., and Rivest R.L. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990

    Google Scholar 

  11. Garduño E., Herman G.T., and Katz H. Boundary tracking in 3-D binary images to produce rhombic faces for a dodecahedral model. IEEE Trans. Med. Imag. 1998; 17:1097–1100

    Article  Google Scholar 

  12. Matej S. and Lewitt R.M. Efficient 3D grids for image reconstruction using spherically-symmetric volume elements. IEEE Trans. Nucl. Sci. 1995; 42:1361–1370

    Article  Google Scholar 

  13. Natterer F. The Mathematics of Computerized Tomography. John Wiley & Sons, Chichester, England, 1986

    MATH  Google Scholar 

  14. Obi T., Matej S., Lewitt R.M., and Herman G.T. 2.5D simultaneous multislice reconstruction by series expansion methods from Fourier-rebinned PET data. IEEE Trans. on Med. Imag. 2000; 19:474–484

    Article  Google Scholar 

  15. Bendriem B. and Townsend D.W., editors. The Theory and Practice of 3D PET. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carvalho, B.M., Garduño, E., Herman, G.T. (2001). Multiseeded Fuzzy Segmentation on the Face Centered Cubic Grid. In: Singh, S., Murshed, N., Kropatsch, W. (eds) Advances in Pattern Recognition — ICAPR 2001. ICAPR 2001. Lecture Notes in Computer Science, vol 2013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44732-6_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-44732-6_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41767-5

  • Online ISBN: 978-3-540-44732-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics