Skip to main content

Multiobjective Optimization in Linguistic Rule Extraction from Numerical Data

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1993))

Included in the following conference series:

Abstract

We formulate linguistic rule extraction as a three-objective combinatorial optimization problem. Three objectives are to maximize the performance of an extracted rule set, to minimize the number of extracted rules, and to minimize the total length of extracted rules. The second and third objectives are related to comprehensibility of the extracted rule set. We describe and compare two genetic-algorithm-based approaches for finding nondominated rule sets with respect to the three objectives of our linguistic rule extraction problem. One approach is rule selection where a small number of linguistic rules are selected from prespecified candidate rules. The other is genetics-based machine learning where rule sets are evolved by generating new rules from existing ones using genetic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, S., Lan, M.-S., Thawonmas, R.: Tuning of a Fuzzy Classifier Derived from Data, Int. J. Approximate Reasoning 14 (1996) 1–24.

    Article  MATH  Google Scholar 

  2. Cordon, O., del Jesus, M. J., Herrera, F.: A Proposal on Reasoning Methods in Fuzzy Rule-Based Classification Systems, Int. J. Approximate Reasoning 20 (1999) 21–45.

    Google Scholar 

  3. Herrera, F., Lozano, M., Verdegay, J. L.: Tuning Fuzzy Logic Controllers by Genetic Algorithms, Int. J. Approximate Reasoning 12 (1995) 299–315, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. Holte, R. C.: Very Simple Classification Rules Perform Well on Most Commonly Used Dataset, Machine Learning 11 (1993) 63–91.

    Article  MATH  Google Scholar 

  5. Horikawa, S., Furuhashi, T., Uchikawa, Y.: On Fuzzy Modeling Using Fuzzy Neural Networks with the Back-Propagation Algorithm, IEEE Trans. on Neural Networks 3 (1992) 801–806.

    Article  Google Scholar 

  6. Ishibuchi, H.: Fuzzy Reasoning Method in Fuzzy Rule-based Systems with General and Specific Rules for Function Approximation, Proc. of 8th IEEE Int. Conference on Fuzzy Systems (1999) 198–203.

    Google Scholar 

  7. Ishibuchi, H., Murata, T., Nakashima, T.: Linguistic Rule Extraction from Numerical Data for High-Dimensional Classification Problems, Int. J. Advanced Computational Intelligence 3 (1999) 386–393.

    Google Scholar 

  8. Ishibuchi, H., Murata, T., Turksen, I. B.: Single-Objective and Two-Objective Genetic Algorithms for Selecting Linguistic Rules for Pattern Classification Problems, Fuzzy Sets and Systems 89 (1997) 135–149.

    Article  Google Scholar 

  9. Ishibuchi, H., Nakashima, T.: Improving the Performance of Fuzzy Classifier Systems for Pattern Classification Problems with Continuous Attributes, IEEE Trans. on Industrial Electronics 46 (1999) 1057–1068.

    Article  Google Scholar 

  10. Ishibuchi, H., Nakashima, T.: Linguistic Rule Extraction by Genetics-Based Machine Learning, Proc. of Genetic and Evolutionary Computation Conference (2000) 195–202.

    Google Scholar 

  11. Ishibuchi, H., Nakashima, T., Kuroda, T.: A Hybrid Fuzzy GBML Algorithm for Designing Compact Fuzzy Rule-Based Classification Systems, Proc. of 9th IEEE International Conference on Fuzzy Systems (2000) 706–711.

    Google Scholar 

  12. Ishibuchi, H., Nakashima, T., Morisawa, T.: Simple Fuzzy Rule-Based Classification Systems Perform well on Commonly Used Real-World Data Sets, Proc. of 16th Annual Meeting of the North American Fuzzy Information Processing Society (1997) 251–256.

    Google Scholar 

  13. Ishibuchi, H., Nakashima, T., Murata, T.: Genetic-Algorithm-Based Approaches to the Design of Fuzzy Systems for Multi-Dimensional Pattern Classification Problems, Proc. of 3rd IEEE Int. Conference on Evolutionary Computation (1996) 229–234.

    Google Scholar 

  14. Ishibuchi, H., Nakashima, T., Murata, T.: Performance Evaluation of Fuzzy Classifier Systems for Multi-Dimensional Pattern Classification Problems, IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics 29 (1999) 601–618.

    Article  Google Scholar 

  15. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting Fuzzy If-Then Rules for Classification Problems using Genetic Algorithms, IEEE Trans. on Fuzzy Systems 3 (1995) 260–270.

    Article  Google Scholar 

  16. Jang, J.-S. R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Trans. on Systems, Man, and Cybernetics 23 (1993) 665–685.

    Article  Google Scholar 

  17. Jin, Y.: Fuzzy Modeling of High-Dimensional Systems: Complexity Reduction and Interpretability Improvement, IEEE Transactions on Fuzzy Systems 8 (2000) 212–221.

    Article  Google Scholar 

  18. Jin, Y., von Seelen, W., Sendhoff, B.: On Generating FC3 Fuzzy Rule Systems from Data using Evolution Strategies, IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 29 (1999) 829–845.

    Article  Google Scholar 

  19. Karr, C. L., Gentry, E. J.: Fuzzy Control of pH using Genetic Algorithms, IEEE Trans. on Fuzzy Systems 1 (1993) 46–53.

    Article  Google Scholar 

  20. Kosko, B.: Fuzzy Systems as Universal Approximators, Proc. of 1st IEEE Int. Conference on Fuzzy Systems (1992) 1153–1162.

    Google Scholar 

  21. Leondes, C. T. (ed.): Fuzzy Theory Systems: Techniques and Applications, Academic Press, San Diego (1999).

    MATH  Google Scholar 

  22. de Oliveira, V.: Semantic Constraints for Membership Function Optimization, IEEE Trans. on Systems, Man, and Cybernetics-Part A: Systems and Humans 29 (1999) 128–138.

    Article  Google Scholar 

  23. Pedrycz, W., de Oliveira, V.: Optimization of Fuzzy Models, IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics 26 (1996) 627–637.

    Article  Google Scholar 

  24. Setnes, M., Babuska, R., Kaymak, U., van Nauta Lemke, H. R.: Similarity Measures in Fuzzy Rule Base Simplification, IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics 28 (1998) 376–366.

    Article  Google Scholar 

  25. Setnes, M., Babuska, R., Verbruggen, B.: Rule-Based Modeling: Precision and Transparency, IEEE Trans. on Systems, Man, and Cybernetics-Part C: Applications and Reviews 28 (1998) 165–169.

    Article  Google Scholar 

  26. Setnes, M., Roubos, H.: GA-Fuzzy Modeling and Classification: Complexity and Performance, IEEE Trans. on Fuzzy Systems 8 (2000) 509–522.

    Article  Google Scholar 

  27. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and Its Applications to Modeling and Control, IEEE Trans. on Systems, Man, and Cybernetics 15 (1985) 116–132.

    MATH  Google Scholar 

  28. van Veldhuizen, D. A., Lamont, G. B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art, Evolutionary Computation 8 (2000) 125–147.

    Article  Google Scholar 

  29. Wang, L.-X.: Fuzzy Systems are Universal Approximators, Proc. of 1st IEEE Int. Conference on Fuzzy Systems (1992) 1163–1170.

    Google Scholar 

  30. Wang, L. X., Mendel, J. M.: Generating Fuzzy Rules by Learning from Examples, IEEE Trans. on Systems, Man, and Cybernetics 22 (1992) 1414–1427.

    Article  MathSciNet  Google Scholar 

  31. Yen, J., Wang, L.: Simplifying Fuzzy Rule-Based Models using Orthogonal Transformation Methods, IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics 29 (1999) 13–24.

    Article  Google Scholar 

  32. Yen, J., Wang, L., Gillespie, W.: Improving the Interpretability of TSK Fuzzy Models by Combining Global Learning and Local Learning, IEEE Trans. on Fuzzy Systems 6 (1998) 530–537.

    Article  Google Scholar 

  33. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results, Evolutionary Computation 8 (2000) 173–195.

    Article  Google Scholar 

  34. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach, IEEE Transactions on Evolutionary Computation 3 (1999) 257–271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishibuchi, H., Nakashima, T., Murata, T. (2001). Multiobjective Optimization in Linguistic Rule Extraction from Numerical Data. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds) Evolutionary Multi-Criterion Optimization. EMO 2001. Lecture Notes in Computer Science, vol 1993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44719-9_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-44719-9_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41745-3

  • Online ISBN: 978-3-540-44719-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics