Advertisement

Ciphertext only Reconstruction of Stream Ciphers Based on Combination Generators

  • Anne Canteaut
  • Eric Filiol
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1978)

Abstract

This paper presents an operational reconstruction technique of most stream ciphers. We primarily expose it for key-stream generators which consist of several linear feedback shift registers combined by a nonlinear Boolean function. It is shown how to completely recover the different feedback polynomials and the combining function, when the algorithm is totally unknown. This attack only requires the knowledge of some ciphertexts, which may be generated from different secret keys. Estimates of necessary ciphertext length and experimental results are detailed.

Keywords

stream cipher Boolean function correlation linear feedback shift register ciphertext only reconstruction 

References

  1. 1.
    A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-check equations of weight 4 and 5. In Advances in Cryptology-EUROCRYPT 2000, Lecture Notes in Computer Science. Springer-Verlag, 2000. To appear.Google Scholar
  2. 2.
    W. Feller. An Introduction to Probability Theory. Wiley, 1966.Google Scholar
  3. 3.
    E. Filiol and C. Fontaine. Highly nonlinear balanced Boolean functions with a good correlation-immunity. In Advances in Cryptology-EUROCRYPT’98, number 1403 in Lecture Notes in Computer Science, pages 475–488. Springer-Verlag, 1998.CrossRefGoogle Scholar
  4. 4.
    P.R. Geffe. How to protect data with ciphers that are really hard to break. Electronics, pages 99–101, 1973.Google Scholar
  5. 5.
    T. Herlestam. On functions of linear shift register sequences. In F. Pichler, editor, Advances in Cryptology-EUROCRYPT’ 85, number 219 in Lecture Notes in Computer Science, pages 119–129. Springer-Verlag, 1986.CrossRefGoogle Scholar
  6. 6.
    T. Johansson and F. Jönsson. Fast correlation attacks based on turbo code techniques. In Advances in Cryptology-CRYPTO’99, number 1666 in Lecture Notes in Computer Science, pages 181–197. Springer-Verlag, 1999.Google Scholar
  7. 7.
    T. Johansson and F. Jönsson. Improved fast correlation attack on stream ciphers via convolutional codes. In Advances in Cryptology-EUROCRYPT’99, number 1592 in Lecture Notes in Computer Science, pages 347–362. Springer-Verlag, 1999.Google Scholar
  8. 8.
    D. Kahn. The Codebreakers: The Story of Secret Writings. Macmillan Publishing Co, 1967.Google Scholar
  9. 9.
    R. Lidl and H. Niederreiter. Finite fields. Cambridge University Press, 1983.Google Scholar
  10. 10.
    F.J. MacWilliams and N.J.A. Sloane. The theory of Error-correcting codes. North-Holland, 1977.Google Scholar
  11. 11.
    W. Meier and O. Staffelbach. Fast correlation attack on certain stream ciphers. J. Cryptology, pages 159–176, 1989.Google Scholar
  12. 12.
    S. Palit and B. Roy. Cryptanalysis of LFSR-encrypted codes with unknown combining function. In ASIACRYPT’99, number 1716 in Lecture Notes in Computer Science. Springer-Verlag, 1999.Google Scholar
  13. 13.
    R.A. Rueppel. Analysis and Design of stream ciphers. Springer-Verlag, 1986.Google Scholar
  14. 14.
    R.A. Rueppel and O.J. Staffelbach. Products of linear recurring sequences with maximum complexity. IEEE Trans. Inform. Theory, 33(1):124–131, 1987.zbMATHCrossRefGoogle Scholar
  15. 15.
    E.S. Selmer. Linear recurrence relations over finite fields. PhD thesis, University of Bergen, Norway, 1966.Google Scholar
  16. 16.
    T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inform. Theory, IT-30(5):776–780, 1984.CrossRefMathSciNetGoogle Scholar
  17. 17.
    T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. Computers, C-34(1):81–84, 1985.CrossRefGoogle Scholar
  18. 18.
    G. Xiao and J.L. Massey. A spectral characterization of correlation-immune combining functions. IEEE Trans. Inform. Theory, IT-34(3):569–571, 1988.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Anne Canteaut
    • 1
  • Eric Filiol
    • 1
    • 2
  1. 1.projet CODESINRIALe Chesnay CedexFRANCE
  2. 2.Ecoles militaires de Saint-Cyr CoëtquidanDGER/CRECSC/DSIGuer CedexFRANCE

Personalised recommendations