Skip to main content

Patterning and Transition to Turbulence in Subcritical Systems: The Case of Plane Couette Flow

  • Conference paper
  • First Online:
Book cover Coherent Structures in Complex Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 567))

Abstract

The problem of the transition to turbulence in subcritical systems is illustrated by experiments and modeling attempts relative to the plane Couette flow. Based on results obtained by the Saclay group (§2), the observed phenomenology points out the role played by coherent structures in the form of streamwise vortices and streaks as nontrivial solutions at finite distance from the basic state. Beyond the formal account in §1, theoretical issues are concretely approached through temporal Lorenz-like and spatio-temporal Swift-Hohenberg-like modeling (§3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Cross, P.C. Hohenberg, “Pattern formation outside equilibrium”, Rev. Mod. Phys. 65 (1993) 851–1112.

    Article  ADS  Google Scholar 

  2. O. Dauchot, P. Manneville, J. Phys. II France 7 (1997) 371–389.

    Article  Google Scholar 

  3. P.G. Drazin, W.H. Reid, Hydrodynamic stability, Cambridge University Press (Cambridge University Press, 1981)

    Google Scholar 

  4. V.A. Romanov, Funkt. Anal. Ego Priloz. 7 (1970) 62–73.

    MathSciNet  Google Scholar 

  5. L.N. Trefethen, A.E. Trefethen, S.C. Reddy, T.A. Driscoll, Science 261 (1993) 578–584.

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Waleffe, Phys. Fluids 7 (1995) 3060–3066.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. J.M. Hamilton, J. Kim, F. Waleffe, J. Fluid Mech. 287 (1995) 317–348.

    Article  MATH  ADS  Google Scholar 

  8. J. Jiménez, A. Pinelli, J. Fluid Mech. 389 (1999) 335–359.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. M. Nagata, J. Fluid Mech. 217 (1990) 519–527.

    Article  ADS  MathSciNet  Google Scholar 

  10. R.M. Clever, F.H. Busse, J. Fluid Mech. 234 (1992) 511–527, and “Bifurcation sequences in problems of thermal convection and of plane Couette flow”, in: J. Grue et al, eds., Waves and Nonlinear Processes in Hydrodynamics (Kluwer, Dordrecht, 1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. A. Schmiegel, “Transition to turbulence in linearly stable shear flows”, Marburg, Dissertation, 1999 (http://archiv.ub.uni-marburg.de/diss/z2000/0062/).

  12. Y. Pomeau, Physica D 23 (1986) 3–11. See also P. Bergé, Y. Pomeau, Ch. Vidal, L’espace chaotique (Hermann, Paris, 1998) Ch. IV.

    Article  ADS  Google Scholar 

  13. W. Kinzel, “Directed Percolation”, dans G. Deutscher et al., eds., Percolation Structures and and Processes, Annals of the Israel Phys Soc., vol. 5 (1983).

    Google Scholar 

  14. H. Chaté, P. Manneville, “Spatio-temporal intermittency”, in Turbulence, a tentative dictionary, P. Tabeling & O. Cardoso, eds. (Plenum Press, 1995).

    Google Scholar 

  15. F. Daviaud, “Experiments in 1D turbulence”, in Turbulence, a tentative dictionary, P. Tabeling & O. Cardoso, eds. (Plenum Press, 1995).

    Google Scholar 

  16. H. Reichardt, “Gesetzmäßigkeiten der geradlinigen turbulenten Couetteströmung”, Mitteilungen AVA Göttingen 22 (1959).

    Google Scholar 

  17. N. Tillmark, P.H. Alfredsson, F. Fluid Mech. 235 (1992) 89–102.

    Article  ADS  Google Scholar 

  18. F. Daviaud, J. Hegseth, P. Bergé, Phys. Rev. Lett. 69 (1992) 2511–2514.

    Article  ADS  Google Scholar 

  19. A. Prigent, O. Dauchot, “Barber-pole turbulence in large aspect-ratio Taylor-Couette flow”, Saclay preprint, Phys. Rev. Lett. submitted (2000); “Laminarturbulent coexistence following a subcritical transition to turbulence”, at 8th European Turbulence Conference, ETC8, Barcelona, June 2000.

    Google Scholar 

  20. S. Bottin, O. Dauchot, F. Daviaud, P. Manneville, Phys. Fluids 10 (1998) 2597–2607.

    Article  ADS  Google Scholar 

  21. O. Dauchot, F. Daviaud, Phys. Fluids 7 (1995) 335–343.

    Article  ADS  Google Scholar 

  22. A. Cherhabili, U. Ehrenstein, J. Fluid Mech. 342(1997) 159–177.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. S. Bottin, O. Dauchot, F. Daviaud, Phys. Rev. Lett. 79 (1997) 4377–4380.

    Article  ADS  Google Scholar 

  24. D. Barkley, L.S. Tuckerman, Phys. Fluids 11 (1999) 1187–1195.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. D.D. Joseph, Stability of fluid motions. I, Springer Tracts in Natural Philosophy, vol. 27 (Springer, Berlin, 1976), see p. 178..

    Google Scholar 

  26. A. Schmiegel, B. Eckhardt, Phys. Rev. Lett. 79 (1997) 5250–5253.

    Article  ADS  Google Scholar 

  27. S. Bottin, F. Daviaud, P. Manneville, O. Dauchot, Europhys. Lett. 43 (1998) 171–176.

    Article  ADS  Google Scholar 

  28. A. Lundbladh, A.V. Johansson, J. Fluid Mech. 229 (1991) 499–516.

    Article  MATH  ADS  Google Scholar 

  29. Waleffe F., Phys. Fluids 9 (1997) 883–900.

    Article  ADS  Google Scholar 

  30. O. Dauchot, N. Vioujard, Eur. Phys. J. B 14 (2000) 377–381.

    Article  ADS  Google Scholar 

  31. Th. Gebhardt, S. Grossmann, Phys. Rev. E 50 (1994) 3705–3711.

    Article  ADS  Google Scholar 

  32. J.S. Baggett, L.N. Trefethen, Phys. Fluids 9 (1997) 1043–1053.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. B. Eckhardt, A. Mersmann, Phys. Rev. E 60 (1999) 509–517.

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Swift, P.C. Hohenberg, Phys. Rev. A 15 (1977) 319.

    Article  ADS  Google Scholar 

  35. H.S. Greenside, W.M. Coughran Jr., N.L. Schryer, Phys. Rev. Lett. 49 (1982) 726–729.

    Article  ADS  MathSciNet  Google Scholar 

  36. P. Manneville, J. Physique 44 (1983) 759–765.

    Article  MathSciNet  Google Scholar 

  37. M. Bestehorn, M. Fantz, R. Friedrich, H. Haken, C. Pérez-García, Z. Phys. B-Condensed Matter 88 (1992) 93–94.

    Article  ADS  Google Scholar 

  38. P. Manneville, F. Locher, C.R. Acad. Sci. Paris 328, série IIb (2000) 159–164.

    MATH  Google Scholar 

  39. P. Manneville, “Modélisation de la transition vers la turbulence de l’écoulement de Couette plan”, in Rencontre du Non-linéaire 2000 (Paris Onze Éditions, Univ. Paris-Sud, Orsay, 2000); also “Modeling transitional plane Couette flow”, at 8th European Turbulence Conference, ETC8, Barcelona, 2000.

    Google Scholar 

  40. C.D. Andereck, S.S. Liu, H.L. Swinney, J. Fluid Mech. 164 (1986) 155.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manneville, P., Dauchot, O. (2001). Patterning and Transition to Turbulence in Subcritical Systems: The Case of Plane Couette Flow. In: Reguera, D., Rubí, J.M., Bonilla, L.L. (eds) Coherent Structures in Complex Systems. Lecture Notes in Physics, vol 567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44698-2_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-44698-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41705-7

  • Online ISBN: 978-3-540-44698-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics