Skip to main content

Exact-IEBP: A New Technique for Estimating Evolutionary Distances between Whole Genomes

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2149))

Included in the following conference series:

Abstract

Evolution operates on whole genomes by operations that change the order and strandedness of genes within the genomes. This type of data presents new opportunities for discoveries about deep evolutionary rearrangement events, provided that sufficiently accurate methods can be developed to reconstruct evolutionary trees in these models [3,11,13,18]. A necessary component of any such method is the ability to accurately estimate the true evolutionary distance between two genomes, which is the number of rearrangement events that took place in the evolutionary history between them. We improve the technique (IEBP) in [21] with a new method, Exact-IEBP, for estimating the true evolutionary distance between two signed genomes. Our simulation study shows Exact-IEBP is a better estimation of true evolutionary distances. Furthermore, Exact-IEBP produces more accurate trees than IEBP when used with the popular distance-based method, neighbor joining [16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Atteson. The performance of the neighbor-joining methods of phylogenetic reconstruction. Algorithmica, 25(2/3):251–278, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  2. D.A. Bader, B.M.E. Moret, and M. Yan. A fast linear-time algorithm for inversion distance with an experimental comparison. In Proc. 7th Workshop on Algs. and Data Structs. (WADS01), 2001. To appear.

    Google Scholar 

  3. M. Blanchette, G. Bourque, and D. Sankoff. Breakpoint phylogenies. In S. Miyano and T. Takagi, editors, Genome Informatics, pages 25–34. Univ. Acad. Press, 1997.

    Google Scholar 

  4. M. Blanchette, M. Kunisawa, and D. Sankoff. Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. EvoL, 49:193–203, 1999.

    Article  Google Scholar 

  5. O. Gascuel. Personal communication, April 2001.

    Google Scholar 

  6. D. Huson. The tree library, 1999.

    Google Scholar 

  7. D. Huson, S. Nettles, K. Rice, T. Warnow, and S. Yooseph. The hybrid tree reconstruction method. J. Experimental Algorithmes, 4:178–189, 1999. http://www.jea.acm.org/.

    MathSciNet  Google Scholar 

  8. R.K. Jansen, personal communication, October 3 2000.

    Google Scholar 

  9. S. Kumar. Minimum evolution trees. Mol. Biol. Evol., 15:584–593, 1996.

    Google Scholar 

  10. B.M.E. Moret, L.-S. Wang, T. Warnow, and S. Wyman. New approaches for reconstructing phylogenies from gene order data. In Proc. 9th Intl. Conf. on Intel. Sys. for Mol. Bio. ISMB 2001. AAAI Press, 2001. To appear.

    Google Scholar 

  11. B.M.E Moret, S.K. Wyman, D.A. Bader, T. Warnow, and M. Yan. A new implementation and detailed study of breakpoint analysis. In Proc. 6th Pacific Symp. Biocomputing (PSB 2001), pages 583–594, 2001.

    Google Scholar 

  12. J.H. Nadeau and B.A. Taylor. Lengths of chromosome segments conserved since divergence of man and mouse. Proc. Nat’l Acad. Sei. USA, 81:814–818, 1984.

    Article  Google Scholar 

  13. R.G. Olmstead and J.D. Palmer. Chloroplast DNA systematics: a review of methods and data analysis. Amer. J. Bot., 81:1205–1224, 1994.

    Article  Google Scholar 

  14. J.D. Palmer. Chloroplast and mitochondrial genome evolution in land plants. In R. Herrmann, editor, Cell Organelles, pages 99–133. Wein, 1992.

    Google Scholar 

  15. L.A. Raubeson and R.K. Jansen. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science, 255:1697–1699, 1992.

    Article  Google Scholar 

  16. N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. & Evol., 4:406–425, 1987.

    Google Scholar 

  17. D. Sankoff and M. Blanchette. Probability models for genome rearrangements and linear invariants for phylogenetic inference. Proc. 3rd Int’l Conf. on Comput. Mol. Bio. (RE-COMB99), pages 302–309, 1999.

    Google Scholar 

  18. D. Sankoff and J.H. Nadeau, editors. Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families. Kluwer Academic Publishers, 2000.

    Google Scholar 

  19. D. Swofford. PAUP*4.0. Sinauer Associates Inc, 2001.

    Google Scholar 

  20. D. Swofford, G. Olson, P. Waddell, and D. Hillis. Phylogenetic inference. In D. Hillis, C. Moritz, and B. Mable, editors, Molecular Systematics, chapter 11. Sinauer Associates Inc, 2 edition, 1996.

    Google Scholar 

  21. L.-S. Wang and T. Warnow. Estimating true evolutionary distances between genomes. In Proc. 33th Annual ACM Symp. on Theory of Comp. (STOC 2001). ACM Press, 2001. To appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, LS. (2001). Exact-IEBP: A New Technique for Estimating Evolutionary Distances between Whole Genomes. In: Gascuel, O., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2001. Lecture Notes in Computer Science, vol 2149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44696-6_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-44696-6_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42516-8

  • Online ISBN: 978-3-540-44696-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics