Advertisement

Lifting-Based Reversible Transforms for Lossy-to-Lossless Wavelet Codecs

  • Artur Przelaskowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2124)

Abstract

Reversible transforms applied in wavelet coder to realize lossy-to-lossless compression are considered in this paper. 1-D wavelet transform possible to be customized in part of nowadays JPEG2000 standard is optimized to increase an efficiency of the first lossy phase of compression process. Different classes of reversible transforms were analyzed, evaluated in experiments, and compared one another in a sense of effectiveness, complexity and possibility of further optimization. Suitable selection of reversible wavelet transform can increase effectiveness of the coder even up to 2.7 dB of PSNR for 0.5 bpp in comparison to standard 5/3 transform. New reversible transform generated with lifting scheme was proposed. It overcomes all other in both phases of lossy-to-lossless compression (up to 0.4 dB of PSNR in comparison to the state-of-art transforms of JPEG2000 standardization process). Therefore, an efficiency of reversible wavelets can be comparable to irreversible wavelets effectiveness in several cases of lossy compression.

Keywords

wavelet coding integer-to-integer transform lifting scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    SO/IEC: JPEG 2000 image coding system. JPEG 2000 Part I Final Draft International Standard (August 2000)Google Scholar
  2. 2.
    Adams, M.D., Kossentini, F.: Reversible integer-to-integer wavelet transforms for image compression: performance, evaluation and analysis. Trans. Image Process. 9 (2000) 1010–1024zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmonic. Analysis 3 (1996) 186–200zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Calderbank, R.C., Daubechies, I., Sweldens, W., Yeo, B.-L.: Wavelet transforms that map integers to integers. Applied and Computational Harmonic Analysis (ACHA) 5 (1998) 332–369zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Sablatnig, J., Seiler, R., Jung, K.: Report on Transform Core Experiment: Compare the lossy performance of various reversible integer wavelet transforms. In: JTC 1/SC 29/WG1N915, 1998Google Scholar
  6. 6.
    Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Trans. Image Process. 1 (1992) 205–220.CrossRefGoogle Scholar
  7. 7.
    Deslauriers, G., Dubuc, S.: Interpolation dyadique. In Fractals, dimensions non entiéres et applications. Masson, Paris (1987) 44–55.Google Scholar
  8. 8.
    Reissell, L.-M.: Wavelet multiresolution representation of curves and surfaces. CVGIP: Graphical Models and Image Process., 58(1996) 198–217.CrossRefGoogle Scholar
  9. 9.
    Wei, D., Tian, J., Wells, O. Jr., Burrus, C.S.: A new class of biorthogonal wavelet systems for image transform coding. IEEE Trans. Image Process., 7 (1998) 1000–1013.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Strang, G., Nguyen, T.: Wavelets and filter banks, Wellesley-Cambridge Press (1996).Google Scholar
  11. 11.
    Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl., 4 (1998) 247–269zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bilgin, A., Sementelli, P.J., Sheng, F., Marcellin, W.: Scalable image coding using reversible integer wavelet transforms. IEEE Trans. Image Process., 9 (2000) 1972–1977zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Adams, M.D., Kharitonenko, I., Kossentini, F.: Report on Core Experiment CodEff4: Performance Evaluation of Several Reversible Integer-to-Integer Wavelet Transforms in the JPEG-2000 Verification Model (Version 2.1). In: ISO/IEC JTC 1/SC 29/WG 1 N 1015, 1998Google Scholar
  14. 14.
    Said, A., Pearlman, W.A.: An image multiresolution representation for lossless and lossy compression. IEEE Trans. Image Process. 5 (1996) 1303–1310CrossRefGoogle Scholar
  15. 15.
    LeGall, D., Tabatabai, A.: Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques. In: Proc. Of IEEE International Conference on Acoustics, Speech, and Signal Process., 2 (1988) 761–764Google Scholar
  16. 16.
    Said, A., Pearlman, W.A.: A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circ. & Syst. Video. Tech., 6 (1996) 243–250.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Artur Przelaskowski
    • 1
  1. 1.Institute of RadioelectronicsWarsaw University of TechnologyWarszawaPoland

Personalised recommendations