Advertisement

Linear Augmented Reality Registration

  • Adnan Ansar
  • Kostas Daniilidis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2124)

Abstract

Augmented reality requires the geometric registration of virtual or remote worlds with the visual stimulus of the user. This can be achieved by tracking the head pose of the user with respect to the reference coordinate system of virtual objects. If tracking is achieved with head-mounted cameras, registration is known in computer vision as pose estimation. Augmented reality is by definition a real-time problem, so we are interested only in bounded and short computational time. We propose a new linear algorithm for pose estimation. Our algorithm shows better performance than the linear algorithm of Quan and Lan [14] and is comparable to the non-predicted time iterative approach of Kumar and Hanson [8].

Keywords

augmented reality linear algorithm pose estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansar, A., Rodrigues, D., Desai, J.P., Daniilidis, K., Kumar, V., Campos, M.F.M.: Visual and haptic collaborative tele-presence. Computers & Graphics 15(5) (2001) (to appear)Google Scholar
  2. 2.
    Bruckstein, A.M., Holt, R.J., Huang, T.S., Netravali, A.N.: Optimum fiducials under weak perspective projection. Proc. Int. Conf. on Computer Vision. Kerkyra, Greece, Sep. 20–23 (1999) 67–72Google Scholar
  3. 3.
    Dementhon, D., Davis, L.S.: Model-based object pose in 25 lines of code. International Journal of Computer Vision 15 (1995) 123–144CrossRefGoogle Scholar
  4. 4.
    Dhome, M., Richetin, M., Lapreste, J.T., Rives, G.: Determination of the attitude of 3-D objects from a single perspective view. IEEE Trans. Pattern Analysis and Machine Intelligence 11 (1989) 1265–1278CrossRefGoogle Scholar
  5. 5.
    Fiore, P.D.: Efficient linear solution of exterior orientation. IEEE Trans. Pattern Analysis and Machine Intelligence 23 (2001) 140–148CrossRefGoogle Scholar
  6. 6.
    Horaud, R., Conio, B., Leboulleux, O., Lacolle, B.: An analytic solution for the perspective 4-point problem. Computer Vision, Graphics, and Image Processing 47 (1989) 33–44CrossRefGoogle Scholar
  7. 7.
    Horn, B.K.P., Hilden, H.M., Negahdaripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. Journal Opt. Soc. Am. A, A5 (1988) 1127–1135MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kumar, R. Hanson, A.R.: Robust methods for estimaging pose and a sensitivity analysis. Computer Vision and Image Understanding 60 (1994) 313–342CrossRefGoogle Scholar
  9. 9.
    Kutulakos, K., Vallino, J.: Calibration-free augmented reality. IEEE Trans. on Visualization and Computer Graphics 4(1) (1998) 1–20CrossRefGoogle Scholar
  10. 10.
    Lenz, R., Tsai, R.Y.: Techniques for calibration of the scale factor and image center for high accuracy 3-d machine vision metrology. IEEE Trans. Pattern Analysis and Machine Intelligence 10 (1988) 713–720CrossRefGoogle Scholar
  11. 11.
    Lowe, D.G.: Fitting parameterized three-dimensional models to images. IEEE Trans. Pattern Analysis and Machine Intelligence 13 (1991) 441–450CrossRefGoogle Scholar
  12. 12.
    Lu, C.-P., Hager, G., Mjolsness, E.: Fast and globally convergent pose estimation from video images. IEEE Trans. Pattern Analysis and Machine Intelligence 22 (2000) 610–622CrossRefGoogle Scholar
  13. 13.
    Maybank, S.: Theory of Reconstruction from Image Motion. Sringer-Verlag, Berlin et al. (1993)zbMATHGoogle Scholar
  14. 14.
    Quan, L., Lan, Z.: Linear n-point camera pose determination. IEEE Trans. Pattern Analysis and Machine Intelligence 21 (1999) 774–780CrossRefGoogle Scholar
  15. 15.
    Seo, Y., Hong, K.-S.: Weakly calibrated video based augmented reality. Proc. Int. Symposium on Augmented Reality. Munich, Germany, Oct. 5–6 (2000) 129–136Google Scholar
  16. 16.
    Welch, G., Bishop, G.: Scaat: Incremental tracking with incomplete information. ACM SIGGRAPH (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Adnan Ansar
    • 1
  • Kostas Daniilidis
    • 1
  1. 1.GRASP LabUniversity of PennsylvaniaPhiladelphia

Personalised recommendations