Particle Image Velocimetry by Feature Tracking

  • Dmitry Chetverikov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2124)


Particle Image Velocimetry (PIV) is a popular approach to flow visualisation in hydro- and aerodynamic studies and applications. The fluid is seeded with particles that follow the flow and make it visible. Traditionally, correlation techniques have been used to estimate the displacements of the particles in a digital PIV sequence. In this paper, two efficient feature tracking algorithms are customised and applied to PIV. The algorithmic solutions of the application are described. Techniques for coherence filtering and interpolation of a velocity field are developed. Experimental results are given, demonstrating that the tracking algorithms offer Particle Image Velocimetry a good alternative to the existing techniques.


motion analysis particle image velocimetry feature tracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector Median Filters. Proceedings of the IEEE 78 (1990) 678–689CrossRefGoogle Scholar
  2. 2.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1) (1994) 43–77CrossRefGoogle Scholar
  3. 3.
    Birchfield, S.: KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker.
  4. 4.
    Chetverikov, D., Nagy, M., Verestoy, J.: Comparison of Tracking Techniques Applied to Digital PIV. Proc. International Conf. on Pattern Recognition 4 (2000) 619–622Google Scholar
  5. 5.
    Chetverikov, D., Verest⪝, J.: Feature Point Tracking for Incomplete Trajectories. Computing 62 (1999) 233–242CrossRefGoogle Scholar
  6. 6.
    Corpetti, T., Mémin, E., Perez, P.: Estimating Fluid Optical Flow. Proc. International Conf. on Pattern Recognition 3 (2000) 1045–1048Google Scholar
  7. 7.
    Grant, I.: Particle image velocimetry: a review. Proc. Institution of Mechanical Engineers, 211 Part C (1997) 55–76CrossRefGoogle Scholar
  8. 8.
    Jähne, B. Digital Image Processing. Springer (1997)Google Scholar
  9. 9.
    Quénot, Pakleza, Kowalewski, T.: Particle image velocimetry with optical flow. Experiments in Fluids 25 (1998) 177–189CrossRefGoogle Scholar
  10. 10.
    Quénot, G.: Data and procedures for development and testing of PIV applications.
  11. 11.
    Quénot, G.: Performance evaluation of an optical flow technique for particle image velocimetry. Proc. Euromech 406 Colloquim. Warsaw (1999) 177–180Google Scholar
  12. 12.
    Standardimages for particle imaging velocimetry.
  13. 13.
    Shi, J., Tomasi, C.: Good features to track. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR94). Seattle (Jun 1994)Google Scholar
  14. 14.
    Tokumaru, P.T., Dimotakis, P.E.: Image correlation velocimetry. Experiments in Fluids 19 (1995) 1–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Dmitry Chetverikov
    • 1
  1. 1.Computer and Automation Research InstituteBudapestHungary

Personalised recommendations