Feature Selection for Classification Using Genetic Algorithms with a Novel Encoding

  • Franz Pernkopf
  • Paul O’Leary
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2124)


Genetic algorithms with a novel encoding scheme for feature selection are introduced. The proposed genetic algorithm is restricted to a particular predetermined feature subset size where the local optimal set of features is searched for. The encoding scheme limits the length of the individual to the specified subset size, whereby each gene has a value in the range from 1 to the total number of available features.

This article also gives a comparative study of suboptimal feature selection methods using real-world data. The validation of the optimized results shows that the true feature subset size is significantly smaller than the global optimum found by the optimization algorithms.


pattern recognition feature selection genetic algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press (1996)Google Scholar
  2. 2.
    Baker, L.E.: Reducing bias and inefficiency in the selection algorithm. Proceedings of the 2 nd International Conference on Genetic Algorithms and Their Applications. Lawrence Erlbaum Associates (1987) 14–21Google Scholar
  3. 3.
    Dash, M., Liu, H.: Feature Selection for Classification. Intelligent Data Analysis, 1 (1997) 131–156CrossRefGoogle Scholar
  4. 4.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A statistical approach. Prentice Hall International (1982)Google Scholar
  5. 5.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley-Interscience Publications (1973)Google Scholar
  6. 6.
    Ferri, F.J., Pudil, P., Hatef, M., Kittler, J.: Comparative study of techniques for large-scale feature selection. In: Gelsema, E.S., Kamal, L.N. (eds.): Pattern Recognition in Practice IV. Elsevier Science B.V. (1994) 403–413Google Scholar
  7. 7.
    Jain, A., and Zongker, D.: Feature Selection: Evaluation, Application, and Small Sample Performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (1997) 153–158CrossRefGoogle Scholar
  8. 8.
    Kittler, J.: Feature set search algorithms. In: Chen, C.H. (ed.): Pattern Recognition and Signal Processing. Sijthoff and Noordhoff, Alphen aan den Rijn (1978) 41–60Google Scholar
  9. 9.
    Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proc. IJCAI-95 (1995) 1146–1151Google Scholar
  10. 10.
    Michalewicz, Z., Fogel, D.B.: How to solve it: Modern Heuristics. Springer-Verlag, Berlin Heidelberg (2000)zbMATHGoogle Scholar
  11. 11.
    Pernkopf, F.: Automatic Inspection System for Detection and Classification of Flaws on turned Parts. Technical Report. University of Leoben (2000)Google Scholar
  12. 12.
    Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Letters, 15 (1994) 1119–1125CrossRefGoogle Scholar
  13. 13.
    Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13 (1991) 252–264CrossRefGoogle Scholar
  14. 14.
    Siedlecki, W., and Sklansky, J.: A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters, 10 (1989) 335–347zbMATHCrossRefGoogle Scholar
  15. 15.
    Somol, P., Pudil, P., Novovičová, J., Paclík, P.: Adaptive floating search methods in feature selection. Pattern Recognition Letters, 20 (1999) 1157–1163CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Franz Pernkopf
    • 1
  • Paul O’Leary
    • 1
  1. 1.University of LeobenLeobenAustria

Personalised recommendations