Superquadric-Based Object Recognition

  • Jaka Krivic
  • Franc Solina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2124)


This paper proposes a technique for object recognition using superquadric built models. Superquadrics, which are three dimensional models suitable for part-level representation of objects, are reconstructed from range images using the recover-and-select paradigm. Using an interpretation tree, the presence of an object in the scene from the model database can be hypothesized. These hypotheses are verified by projecting and re-fitting the object model to the range image which at the same time enables a better localization of the object in the scene.


superquadrics part-level object modeling range images 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, A.H.: Superquadrics and Angle-Preserving Transformations. IEEE Computer Graphics and Applications, 1 (January 1981) 11–23Google Scholar
  2. 2.
    Bolles R.C., Horaud. P.: 3DPO: A Three-Dimensional Part Orientation System. The International Journal of Robotic Research, 5 (1986) 3–26CrossRefGoogle Scholar
  3. 3.
    Dickinson, S.J., Pentland, A.P., Rosenfeld, A.: From volumes to views: An approach to 3-D object recognition. CVGIP: Image Understanding, 55 (1992) 130–154zbMATHCrossRefGoogle Scholar
  4. 4.
    Grimson W.E.L.: Object Recognition by Computer. MIT Press, Cambridge, MA (1990)Google Scholar
  5. 5.
    Jaklič A., Leonardis A., Solina F.: Segmentation and Recovery of Superquadrics. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  6. 6.
    Jojić N., Huang T.S.: Computer vision and graphics techniques for modeling dressed humans. In: Leonardis A., Solina F., Bajcsy R. (eds.): The confluence of computer vision and computer graphics. Kluwer, Dordrecht (2000) 179–200Google Scholar
  7. 7.
    Chella A., Frixione M., Gaglio S.: Understanding dynamic scenes. Artificial Intelligence, 123 (2000) 89–132zbMATHCrossRefGoogle Scholar
  8. 8.
    Leonardis A., Gupta A., Bajcsy R.: Segmentation of range images as the search for geometric parametric models. International Journal of Computer Vision, 14 (1995) 253–277CrossRefGoogle Scholar
  9. 9.
    Leonardis A., Jaklič A., Solina F.: Superquadrics for segmentation and modeling range data. IEEE Transactions on Pattern Recognition and Machine Intelligence, 19 (1997) 1289–1295CrossRefGoogle Scholar
  10. 10.
    Nevatia R., Binford T.: Description and Recognition of Curved Objects. Artificial Intelligence, 38 (1977) 77–98CrossRefGoogle Scholar
  11. 11.
    Pentland A.P.: Perceptual organization and the representation of natural form. Artificial Intelligence, 28 (1986) 293–331CrossRefMathSciNetGoogle Scholar
  12. 12.
    Raja N.S., Jain A.K.: Recognizing geons from superquadrics fitted to range data. Image and Vision Computing, 10 (1992) 179–190CrossRefGoogle Scholar
  13. 13.
    Solina F., Bajcsy R.: Recovery of parametric models from range images: The case for superquadrics with global deformations. IEEE Trans. Pattern Anal. Machine Intell., 12 (1990) 131–147CrossRefGoogle Scholar
  14. 14.
    Trucco E., Verri A.: Introductory techniques for 3-D computer vision. Prentice Hall, NJ (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jaka Krivic
    • 1
  • Franc Solina
    • 1
  1. 1.Faculty of Computer and Information Science Computer Vision LaboratoryUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations