Fast PNN Using Partial Distortion Search

  • Olli Virmajoki
  • Pasi Fränti
  • Timo Kaukoranta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2124)


Pairwise nearest neighbor method (PNN), in its exact form, provides good quality codebooks for vector quantization but at the cost of high run time. We consider the utilization of the partial distortion search technique in order to reduce the workload caused by the distance calculations in the PNN. By experiments, we show that the simple improvement reduces the run time down to 50–60%


Vector quantization pairwise nearest neighbor method partial distortion search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gersho, A. and Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic Publishers, Dordrecht (1992)zbMATHGoogle Scholar
  2. 2.
    Equitz, W.H.: A new vector quantization clustering algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37 (1989) 1568–1575CrossRefGoogle Scholar
  3. 3.
    Linde, Y., Buzo, A. and Gray, R.M.: An Algorithm for Vector Quantizer Design. IEEE Transactions on Communications, 28 (1980) 84–95CrossRefGoogle Scholar
  4. 4.
    de Garrido, D.P., Pearlman, W.A. and Finamore, W.A.: A clustering algorithm for entropy-constrained vector quantizer design with applications in coding image pyramids. IEEE Transactions on Circuits and Systems for Video Technology, 5 (1995) 83–95CrossRefGoogle Scholar
  5. 5.
    Kaukoranta, T., Franti, P. and Nevalainen, O.: Iterative split-and-merge algorithm for VQ codebook generation. Optical Engineering, 37 (1998) 2726–2732CrossRefGoogle Scholar
  6. 6.
    Franti, P., Kivijarvi, J., Kaukoranta, T. and Nevalainen, O.: Genetic algorithms for large scale clustering problem. The Computer Journal, 40 (1997) 547–554CrossRefGoogle Scholar
  7. 7.
    Shanbehzadeh, J. and Ogunbona, P.O.: On the computational complexity of the LBG and PNN algorithms. IEEE Transactions on Image Processing 6 (1997) 614–616CrossRefGoogle Scholar
  8. 8.
    Franti, P., Kaukoranta, T., Shen D.-F. and Chang, K.-S.: Fast and memory efficient implementation of the exact PNN. IEEE Transactions on Image Processing, 9 (2000) 773–777CrossRefGoogle Scholar
  9. 9.
    Bei, C.-D. and Gray, R.M.: An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Transactions on Communications, 33 (1985) 1132–1133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Olli Virmajoki
    • 1
  • Pasi Fränti
    • 1
  • Timo Kaukoranta
    • 2
  1. 1.Department of Computer ScienceUniversity of JoensuuJoensuuFinland
  2. 2.Turku Centre for Computer Science (TUCS) Department of Computer ScienceUniversity of TurkuTurkuFinland

Personalised recommendations