Skip to main content

Robot Localization Using Omnidirectional Color Images

  • Conference paper
  • First Online:
Robot Vision (RobVis 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1998))

Included in the following conference series:

Abstract

We describe a vision-based indoor mobile robot localization algorithm that does not require historical position estimates. The method assumes the presence of an a priori map and a reference omnidirectional view of the workspace. The current omnidirectional image of the environment is captured whenever the robot needs to relocalise. A modified hue profile is generated for each of the incoming images and compared with that of the reference image to find the correspondence. The current position of the robot can then be determined using triangulation as both the reference position and the map of the workspace are available. The method was tested by mounting the camera system at a number of random positions positions in a 11.0m × 8.5 m room. The average localization error was 0.45 m. No mismatch of features between the reference and incoming image was found amongst the testing cases.

This work was supported in part by the Foundation for Research, Science and Technology, New Zealand, with a Top Achiever Doctoral Scholarship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ch. Balkenius: Spatial learning with perceptually grounded representations. Robotics and Autonomous Systems, 25 (1998) 165–175. 168

    Article  Google Scholar 

  2. A. Elfes: Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and Automation, RA-3 (1987) 249–265. 168

    Article  Google Scholar 

  3. H. R. Everett: Sensors for Mobile Robots: Theory and Application. A. K. Peters Ltd., (1995). 168

    Google Scholar 

  4. L. Jetto, S. Longhi, G. Venturini: Development and experimental validation of an adaptive extended kalman filter for the localization of mobile robots. IEEE Transactions on Robotics and Automation, 15 (1999) 219–229. 167

    Article  Google Scholar 

  5. J. J. Leonard, H. F. Durrant-Whyte: Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation, 7 (1991) 376–382. 168

    Article  Google Scholar 

  6. L.-J. Lin, Th.R. Hancock, J. S. Judd: A robust landmark-based system for vehicle location using low-bandwidth vision. Robotics and Autonomous Systems, 25 (1998) 19–32. 168

    Article  Google Scholar 

  7. B. Yamauchi: Mobile robot localization in dynamic environment using dead reckoning and evidence grids. In: Proceed. of the IEEE Internat. Conf. on Robotics and Automation, Minneapolis, Minnesota, (April 1996) 1401–1406. 168

    Google Scholar 

  8. J. Zhang, A. Knoll, V. Schwert: Situated neuro-fuzzy control for vision-based robot localisation. Robotics and Autonomous Systems, 28 (1999) 71–82. 168

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuen, D.C.K., MacDonald, B.A. (2001). Robot Localization Using Omnidirectional Color Images. In: Klette, R., Peleg, S., Sommer, G. (eds) Robot Vision. RobVis 2001. Lecture Notes in Computer Science, vol 1998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44690-7_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-44690-7_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41694-4

  • Online ISBN: 978-3-540-44690-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics