Advertisement

Real Time Morphological Image Contrast Enhancement in Virtex FPGA

  • Jerzy Kasperek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2147)

Abstract

This paper describes the implementation of the real time local image contrast enhancement method. The system is based on Virtex FPGA chip and enhances the angiocardiographic data using the modified mathematical morphology multiscale TopHat transform. The morphological TopHat transform proved its effectiveness but the direct real time pipeline implementation of the multiscale version requires too many memory blocks. The author proposes a slight modification of the algorithm and presents satisfactory image contrast enhancement results and an efficient FPGA implementation. Proposed pipeline architecture uses the structural element decomposition and employs the Virtex BlockRam modules effectively. The processing kernel realises the contrast enhancement for the 512 × 512 image data with 8 bits/pixel representation in the real time in one XCV-800 Virtex chip.

Keywords

Processing Kernel Reconfigurable Hardware Video Buffer Virtex FPGA Image Contrast Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chaudhiri A.S., Cheung P.Y.K., Luk W., A Reconfirable Data-Localised Array for Morphological Algorithms. Proceedings of the International Workshop on Field-Programmable Logic and Applications, (FPL), Springer-Verlag 1997.Google Scholar
  2. [2]
    Coltuc. D, Pitas I., Fast Runnig Max/Min Filters. Proceedings of the IEEE Workshop on Nonlinear Signal and Image Processing NSIP-95 Neos Marinaras, GreeceGoogle Scholar
  3. [3]
    Dougherty E.R., Astola J. T., Nonlinear Filters for Image Processing, SPIE Optical Engineering Press, USA, 1999.zbMATHGoogle Scholar
  4. [4]
    Gasteratos A., Andreadis I., Non-linear image processing in hardware, Pattern Recognition Vol. 33, 2000 pages 1013–1021.CrossRefGoogle Scholar
  5. [5]
    Giardina Ch. R., Dougherty E.R., Morphological Methods in Image and Signal Processing, Prentice-Hall, Englewood Cliffs NJ, USA 1988.Google Scholar
  6. [6]
    Goren S., Balkir S., Dundar G., Anarim E., Novel VLSI Architectures for Morphological Filtering. Proceedings of the IEEE Workshop on Nonlinear Signal and Image Processing NSIP-95 Neos Marinaras, Greece.Google Scholar
  7. [7]
    Haralick R. M., Shapiro L. G., Computer and Robot Vision, Addison Wesley Publishing Company, USA, 1992.Google Scholar
  8. [8]
    Jonker P. P., Morphological Image Processing: Architecture and VLSI design, Kluwer Technische Boeken B.V., Holland 1992.Google Scholar
  9. [9]
    Mukhopadhyay S., Chanda B., A multiscale morphological approach to local contrast enhancement, Signal Processing, Vol. 80, 2000, pages 685–696.zbMATHCrossRefGoogle Scholar
  10. [10]
    Osiris ver 3.6, University Hospital of Geneva. http://www.expasv.ch/UIN
  11. [11]
    Pitas I., Venetsanopoulos A.N., Nonlinear Digital Filters Principles and Applications, Kluwer Academic Publishers, USA 1990.zbMATHGoogle Scholar
  12. [12]
    Schavemaker J.G.M., Reinders M.J.T., Gerbrands J.J., Backer E., Image sharpeninig by morphological filtering, Pattern Recognition Vol. 33, 2000, pages 997–1012.CrossRefGoogle Scholar
  13. [13]
    SDC Information Systems, SDC Morphology Toolbox for Matlab 5 User’s Guide, 2000. http://www.morph.com
  14. [14]
    Serra J., Image analysis and mathematical morphology Academic Press 1988Google Scholar
  15. [15]
    Soille P., Morphological Image Analysis Principles and Applications, Sringer-Verlag, Berlin Heidelberg, 1998.Google Scholar
  16. [16]
    Woolfries N., Lysaght P., Marshall S., McGregor G., Robinson D., Fast Adaptive Image Processing in FPGAs Using Stack Filters. Proceedings of the International Workshop on Field-Programmable Logic and Applications, (FPL), Springer-Verlag 1998.Google Scholar
  17. [17]
    X Engineering Software System Corporation. http://www.xess.com
  18. [18]
    Xilinx Data Book 2000. http://www.xilinx.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jerzy Kasperek
    • 1
  1. 1.Institute of ElectronicsAGH Technical University KrakowKrakowPoland

Personalised recommendations