Skip to main content

Randomness and Reductibility

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2136))

Abstract

How random is a real? Given two reals, which is more random? If we partition reals into equivalence classes of reals of the “same degrees of randomness”, what does the resulting structure look like? The goal of this paper is to look at questions like these, specifically by studying the properties of reducibilities that act as measures of relative randomness, as embodied in the concept of initial-segment complexity. One such reducibility, called domination or Solovay reducibility, was introduced by Solovay [34], and has been studied by Calude, Hertling, Khoussainov, and Wang [8], Calude [3], Kučera and Slaman [22], and Downey, Hirschfeldt, and Nies [15], among others. Solovay reducibility has proved to be a powerful tool in the study of randomness of effectively presented reals. Motivated by certain shortcomings of Solovay reducibility, which we will discuss below, we introduce two new reducibilities and study, among other things, the relationships between these various measures of relative randomness.

The authors’ research was supported by the Marsden Fund for Basic Science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ambos-Spies and A. Kučera, Randomness in computability theory, in P. A. Cholak, S. Lempp, M. Lerman, and R. A. Shore (eds.), Computability Theory and Its Applications (Boulder, CO, 1999), vol. 257 of Contemp. Math. (Amer. Math. Soc., Providence, RI, 2000) 1–14.

    Google Scholar 

  2. K. Ambos-Spies, K. Weihrauch, and X. Zheng, Weakly computable real numbers, J. Complexity 16 (2000) 676–690.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. S. Calude, A characterization of c.e. random reals, to appear in Theoret. Comput. Sci.

    Google Scholar 

  4. C. S. Calude, Information and Randomness, an Algorithmic Perspective, Monographs in Theoretical Computer Science (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  5. C. S. Calude and G. Chaitin, Randomness everywhere, Nature 400 (1999) 319–320.

    Article  Google Scholar 

  6. C. S. Calude and R. J. Coles, Program-size complexity of initial segments and domination reducibility, in J. Karhumäki, H. Maurer, G. Păun, and G. Rozenberg (eds.), Jewels Are Forever (Springer-Verlag, Berlin, 1999) 225–237.

    Google Scholar 

  7. C. S. Calude, R. J. Coles, P. H. Hertling, and B. Khoussainov, Degree-theoretic aspects of computably enumerable reals, in S. B. Cooper and J. K. Truss (eds.), Models and Computability (Leeds, 1997), vol. 259 of London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 1999) 23–39.

    Google Scholar 

  8. C. S. Calude, P. H. Hertling, B. Khoussainov, and Y. Wang, Recursively enumerable reals and Chaitin Ω numbers, Centre for Discrete Mathematics and Theoretical Computer Science Research Report Series 59, University of Auckland (October 1997), extended abstract in STACS 98, Lecture Notes in Comput. Sci. 1373, Springer, Berlin, 1998, 596–606.

    Google Scholar 

  9. C. S. Calude and A. Nies, Chaitin Ω numbers and strong reducibilities, J. Univ. Comp. Sci. 3 (1998) 1162–1166.

    MathSciNet  Google Scholar 

  10. G. S. Ceitin, A pseudofundamental sequence that is not equivalent to a monotone one, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 20 (1971) 263–271, 290, in Russian with English summary.

    Google Scholar 

  11. G. J. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput. Mach. 22 (1975) 329–340, reprinted in [14].

    MATH  MathSciNet  Google Scholar 

  12. G. J. Chaitin, Algorithmic information theory, IBM J. Res. Develop. 21 (1977) 350–359, 496, reprinted in [14].

    Article  MATH  MathSciNet  Google Scholar 

  13. G. J. Chaitin, Incompleteness theorems for random reals, Adv. in Appl. Math. 8 (1987) 119–146, reprinted in [14].

    Article  MATH  MathSciNet  Google Scholar 

  14. G. J. Chaitin, Information, Randomness & Incompleteness, vol. 8 of Series in Computer Science, 2nd ed. (World Scientific, River Edge, NJ, 1990).

    Google Scholar 

  15. R. Downey, D. R. Hirschfeldt, and A. Nies, Randomness, computability, and density, to appear in SIAM J. Comp. (extended abstract in A. Ferreira and H. Reichel (eds.), STACS 2001 Proceedings, Lecture Notes in Computer Science 2010 (Springer, 2001), 195–205).

    Google Scholar 

  16. R. Downey and G. LaForte, Presentations of computably enumerable reals, to appear in Theoret. Comput. Sci.

    Google Scholar 

  17. L. Fortnow, Kolmogorov complexity, to appear in R. G. Downey and D. R. Hirschfeldt (eds.), Aspects of Complexity, Minicourses in Algorithmics, Complexity, and Computational Algebra, NZMRI Mathematics Summer Meeting, Kaikoura, New Zealand, January 7–15, 2000.

    Google Scholar 

  18. C. Ho, Relatively recursive reals and real functions, Theoret. Comput. Sci. 210 (1999) 99–120.

    Article  MATH  MathSciNet  Google Scholar 

  19. K.-I. Ko, On the definition of some complexity classes of real numbers, Math. Systems Theory 16 (1983) 95–100.

    Article  MATH  MathSciNet  Google Scholar 

  20. K.-I. Ko, On the continued fraction representation of computable real numbers, Theoret. Comput. Sci. 47 (1986) 299–313.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. N. Kolmogorov, Three approaches to the quantitative definition of information, Internat. J. Comput. Math. 2 (1968) 157–168.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Kučera and T. Slaman, Randomness and recursive enumerability, to appear in SIAM J. Comput.

    Google Scholar 

  23. A. H. Lachlan, Recursive real numbers, J. Symbolic Logic 28 (1963) 1–16.

    Article  MathSciNet  Google Scholar 

  24. L. Levin, On the notion of a random sequence, Soviet Math. Dokl. 14 (1973) 1413–1416.

    MATH  Google Scholar 

  25. L. Levin, The various measures of the complexity of finite objects (an axiomatic description), Soviet Math. Dokl. 17 (1976) 522–526.

    MATH  Google Scholar 

  26. M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and its Applications, 2nd ed. (Springer-Verlag, New York, 1997).

    MATH  Google Scholar 

  27. P. Martin-Löf, The definition of random sequences, Inform. and Control 9 (1966) 602–619.

    Article  Google Scholar 

  28. H. Rice, Recursive real numbers, Proc. Amer. Math. Soc. 5 (1954) 784–791.

    Article  MATH  MathSciNet  Google Scholar 

  29. C.-P. Schnorr, Process complexity and effective random tests, J. Comput. System Sci. 7 (1973) 376–388.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. Soare, Cohesive sets and recursively enumerable Dedekind cuts, Pacific J. Math. 31 (1969) 215–231.

    MATH  MathSciNet  Google Scholar 

  31. R. Soare, Recursion theory and Dedekind cuts, Trans. Amer. Math. Soc. 140 (1969) 271–294.

    Article  MATH  MathSciNet  Google Scholar 

  32. R. J. Solomonoff, A formal theory of inductive inference I, Inform. and Control 7 (1964) 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. J. Solomonoff, A formal theory of inductive inference II, Inform. and Control 7 (1964) 224–254.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. M. Solovay, Draft of a paper (or series of papers) on Chaitin’s work... done for the most part during the period of Sept.–Dec.1974 (May 1975), unpublished manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 215 pages.

    Google Scholar 

  35. R. M. Solovay, On random r.e. sets, in A. Arruda, N. Da Costa, and R. Chuaqui (eds.), Non-Classical Logics, Model Theory, and Computability. Proceedings of the Third Latin-American Symposium on Mathematical Logic, Campinas, July 11–17, 1976, vol. 89 of Studies in Logic and the Foundations of Mathematics (North-Holland, Amsterdam, 1977) 283–307.

    Google Scholar 

  36. M. van Lambalgen, Random Sequences, PhD Thesis, University of Amsterdam (1987).

    Google Scholar 

  37. D. Zambella, On sequences with simple initial segments, Tech. rep., Institute for Language, Logic and Information, University of Amsterdam (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Downey, R.G., Hirschfeldt, D.R., La Forte, G. (2001). Randomness and Reductibility. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-44683-4_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42496-3

  • Online ISBN: 978-3-540-44683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics