Skip to main content

Algorithmic Information Theory and Cellular Automata Dynamics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2136))

Abstract

We study the ability of discrete dynamical systems to transform/ generate randomness in cellular spaces. Thus, we endow the space of bi-infinite sequences by a metric inspired by information distance (defined in the context of Kolmogorov complexity or algorithmic information theory). We prove structural properties of this space (non-separability, completeness, perfectness and infinite topological dimension), which turn out to be useful to understand the transformation of information performed by dynamical systems evolving on it. Finally, we focus on cellular automata and prove a dichotomy theorem: continuous cellular automata are either equivalent to the identity or to a constant one. This means that they cannot produce any amount of randomness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Kůrka A. Maass. Stability of subshifts in cellular automata. to appaer in Fondamenta informaticæ, 2000.

    Google Scholar 

  2. S. Amoroso and Y. N. Patt. Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. J. Comp. Syst. Sci., 6:448–464, 1972.

    MATH  MathSciNet  Google Scholar 

  3. C. H. Bennet, P. Gács, M. Li, P. M. B. Vitányi, and W. H. Zurek. Information distance. IEEE Trans. Inform. Theory, 44(4):1407–1423, 1998.

    Article  MathSciNet  Google Scholar 

  4. F. Blanchard, E. Formenti, and P. Kůrka. Cellular automata in Cantor, Besicovitch and Weyl topological spaces. Complex Systems, 11–2, 1999.

    Google Scholar 

  5. A. A. Brudno. Entropy and complexity of the trajectories of a dynamical system. Trans. Moscow Math. Soc., 2:127–151, 1983.

    Google Scholar 

  6. C. Calude. Information and Randomness. Springer-Verlag, 1994.

    Google Scholar 

  7. C. Calude, P. Hertling, H. Jürgensen, and K. Weihrauch. Randomness on full shift spaces. Chaos, Solitons & Fractals, 1:1–13, 2000.

    Google Scholar 

  8. G. Cattaneo, E. Formenti, G. Manzini, and L. Margara. Ergodicity and regularity for cellular automata over Z m . Theoretical Computer Science, 233(1-2):147–164, 1999.

    Article  MathSciNet  Google Scholar 

  9. G. J. Chaitin. On the length of programs for computing finite binary sequences. J. of ACM, 13:547–569, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.-C. Dubacq, B. Durand, and E. Formenti. Kolmogorov complexity and cellular automata classification. Theor. Comp. Sci., 259(1-2):271–285, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Durand. The surjectivity problem for 2D cellular automata. Journal of Computer and Systems Science, 49(3):718–725, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Durand. Global properties of cellular automata. In E. Goles and S. Martinez, editors, Cellular Automata and Complex Systems. Kluwer, 1998.

    Google Scholar 

  13. J. Kari. Reversibility and surjectivity problems of cellular automata. Journal of Computer and System Sciences, 48:149–182, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. N. Kolmogorov. Three approaches to the definition of the concept “quantity of information”. Problems of information transmission, 1:3–11, 1965.

    MATH  MathSciNet  Google Scholar 

  15. M. Li and P. Vitányi. An Introduction to Kolmogorov complexity and its applications. Springer-Verlag, second edition, 1997.

    Google Scholar 

  16. B. Martin. Apparent entropy of cellular automata. Complex Systems, 12, 2000.

    Google Scholar 

  17. P. Martin-Löf. The definition of a random sequence. Information & Control, 9:602–619, 1966.

    Article  Google Scholar 

  18. A. Maruoka and M. Kimura. Conditions for injectivity of global maps for tessellation automata. Information & control, 32:158–162, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Maruoka and M. Kimura. Injectivity and surjectivity of parallel maps for cellular automata. Journal of Computer and System Sciences, 18:158–162, 1979.

    Article  MathSciNet  Google Scholar 

  20. E. F. Moore. Machine models of self-reproduction. Proc. Symp. Appl. Math., AMS Rep., 14:17–34, 1963.

    Google Scholar 

  21. J. Myhill. The converse of Moore’s Garden of Eden theorem. Proc. Amer. Math. Soc., 14:685–686, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Sutner. De Bruijn graphs and linear cellular automata. Complex Systems, 5:19–30, 1991.

    MATH  MathSciNet  Google Scholar 

  23. V. A. Uspensky, A. L. Semenov, and A. Kh. Shen. Can individual sequences of zeros and ones be random? Russ. Math. Surveys, 45:121–189, 1990.

    Article  Google Scholar 

  24. V. A. Uspensky and A. Kh. Shen. Relations between varieties of Kolmogorov complexities. Math. Syst. Theory, 29(3):270–291, 1996.

    MathSciNet  Google Scholar 

  25. H. S. White. Algorithmic complexity of points in dynamical systems. Ergod. Th. & Dynam. Sys., 13:807–830, 1993.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cervelle, J., Durand, B., Formenti, E. (2001). Algorithmic Information Theory and Cellular Automata Dynamics. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44683-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42496-3

  • Online ISBN: 978-3-540-44683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics