Skip to main content

Seismic Anisotropy Tomography

  • Chapter
  • First Online:
Imaging of Complex Media with Acoustic and Seismic Waves

Part of the book series: Topics in Applied Physics ((TAP,volume 84))

Abstract

The main breakthrough in seismology during the last ten years is related to the emergence and development of more and more sophisticated 3-dimensional imaging techniques, usually named seismic tomography, from the local scale up to global scale of the Earth. The progress has been made possible by the rapid developments in seismic instrumentation, in electronics, and by the extensive use of massive computational facilities. However, in contrast to usual experiments in physics, geophysicists cannot control all the conditions and must use natural sources. Consequently, most global tomographic models suffer severe limitations due to imperfect data coverage and theoretical approximations. It is usually assumed that the propagating elastic medium is isotropic, which is shown to be a poor approximation. We show in this paper how to take account of the anisotropy of the Earth’s materials. The consequence is that, by including other geological constraints, we are able to map not only the 3-dimensional temperature heterogeneities but also the flow field within the convecting mantle. The complete tomographic technique, which includes the resolution of a forward problem and of an inverse problem, is described. It is important to emphasize the fact that in order to check the reliability of a tomographic model it is necessary to calculate the errors and the resolution associated with the model by considering the structure of the data space (errors and correlations) and the parameter space (a posteriori errors, covariance function, resolution). However, despite the increasing quality of seismograms provided by modern digital networks (GEOSCOPE, IRIS, etc.), the lateral resolution at the global scale is limited to about 1000 km and the installation of ocean-bottom observatories constitutes a new challenge for the next century. The next step is to apply to data recent theoretical developments in order to use all the information provided by seismic waveforms. Then, we will receive new insight into anisotropic and anelastic parameters within the Earth, and also within other solid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Knopoff, Observation and inversion of surface wave inversion, Tectono-physics 13, 497–519 (1972)

    Article  ADS  Google Scholar 

  2. J. H. Woodhouse, A. M. Dziewonski, Mapping the upper mantle: Three dimensional modelling of Earth structure by inversion of seismic waveforms, J. Geophys. Res. 89, 5953–5986 (1984)

    Article  ADS  Google Scholar 

  3. A. M. Dziewonski, Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6, J. Geophys. Res. 89, 5929–5952 (1984)

    Article  ADS  Google Scholar 

  4. I. Nakanishi, D. L. Anderson, Measurement of mantle wave velocities and inversion for lateral heterogeneity and anisotropy, II. Analysis by the single station method, Geophys. J. R. Astron. Soc. 78, 573–618 (1984)

    ADS  Google Scholar 

  5. H.-C. Nataf, I. Nakanishi, D. L. Anderson, Anisotropy and shear velocity heterogeneities in the upper mantle, Geophys. Res. Lett. 11, 109–112 (1984)

    Article  ADS  Google Scholar 

  6. H.-C. Nataf, I. Nakanishi, D. L. Anderson, Measurement of mantle wave velocities and inversion for lateral heterogeneity and anisotropy, III. Inversion, J. Geophys. Res. 91, 7261–7307 (1986)

    Article  ADS  Google Scholar 

  7. D. Agnew, J. Berger, R. Buland, W. Farrell, F. Gilbert, International deployment of accelerometers: A network of very long period seismology, EOS, Trans. Am. Geophys. Union 57, 180–188 (1976)

    Google Scholar 

  8. J. Peterson, H. M. Butler, L. G. Holcomb, C. R. Hutt, The Seismic Research Observatory, Bull. Seism. Soc. Am. 66, 2049–2068 (1977)

    Google Scholar 

  9. B. Romanowicz, M. Cara, J. F. Fels, D. Rouland, GEOSCOPE: a French initiative in long period, three component, global seismic networks, EOS, Trans. Am. Geophys. Union 65, 753–754 (1984)

    Google Scholar 

  10. S. W. Smith, IRIS, a program for the next decade, EOS, Trans. Am. Geophys. Union 67, 213–219 (1986)

    Google Scholar 

  11. J.-P. Montagner, Surface waves on a global scale — Influence of anisotropy and anelasticity, In Seismic Modeling of the Earth’s Structure, ed. by E. Boschi, G. Ekström, A. Morelli, Summer School of Erice, (Bologna 1996) p. 81–148

    Google Scholar 

  12. J.-P. Montagner, First results on the three dimensional structure of the Indian Ocean inferred from long period surface waves, Geophys. Res. Lett. 13, 315–318, (1986)

    Article  ADS  Google Scholar 

  13. J.-P. Montagner, T. Tanimoto, Global anisotropy in the upper mantle inferred from the regionalization of phase velocities, J. Geophys. Res. 95, 4797–4819 (1990)

    Article  ADS  Google Scholar 

  14. J.-P. Montagner, T. Tanimoto, Global upper mantle tomography of seismic velocities and anisotropies, J. Geophys. Res. 96, 20 337–20 351 (1991)

    Article  ADS  Google Scholar 

  15. T. Tanimoto, Waveform inversion of Love waves: The Born Seismogram approach, Geophys. J. R. Astron. 78, 641–660 (1984)

    ADS  Google Scholar 

  16. G. Roult, B. Romanowicz, J.-P. Montagner, 3D upper mantle shear velocity and attenuation from fundamental mode free oscillation data, Geophys. J. Int. 101, 61–80 (1990)

    Article  ADS  Google Scholar 

  17. B. Romanowicz, The upper mantle degree two: Constraints and inferences from global mantle wave attenuation measurements, J. Geophys. Res. 95, 11051–11071 (1990)

    Article  ADS  Google Scholar 

  18. T. Tanimoto, Waveform inversion of mantle Love waves: The Born seismogram approach, Geophys. J. R. Astron. Soc. 78, 641–660 (1984)

    ADS  Google Scholar 

  19. J. K. Wong, Upper mantle heterogeneity from phase and amplitude data of mantle waves, PhD Thesis, Harvard University, Cambridge MA (1989)

    Google Scholar 

  20. R. Snieder, Large-scale waveform inversions of surface waves for lateral heterogeneity, 1. Theory and numerical examples, J. Geophys. Res. 93, 12055–12066 (1988)

    Article  ADS  Google Scholar 

  21. R. Snieder, Large-scale waveform inversions of surface waves for lateral heterogeneity, 2. Application to surface waves in Europe and the Mediterranean, J. Geophys. Res. 93, 12 067–12 080 (1988)

    ADS  Google Scholar 

  22. E. Wielandt, G. Streickeisen, The leaf-spring seismometer: design and performances, Bull. Seism. Soc. Am. 72, 2349–2367 (1982)

    Google Scholar 

  23. S. Cacho, Etude et Réalisation d’un sismomètre très large bande, 3 axes, qualifié spatial, Thèse de l’Université Paris VII (1996)

    Google Scholar 

  24. P. Lognonné, J. Gagnepain-Beyneix, W. B. Banerdt, S. Cacho, J.-F. Karczewski, An ultra-broadband seismometer in InterMarsnet, Planet. Space Sci. 44, 1237–1249 (1996)

    Article  ADS  Google Scholar 

  25. J.-P. Montagner, P. Lognonné, R. Beauduin, G. Roult, J.-F. Karczewski, E. Stutzmann, Towards multiscale and multiparameter networks for the next century: The French efforts, Phys. Earth Planet. Int. 108, 155–174 (1998)

    Article  ADS  Google Scholar 

  26. J. Peterson, Observation and modeling of background seismic noise, I. S. Geol. Surv. Open-file report 93-222, Albuquerque (1993)

    Google Scholar 

  27. J.-P. Montagner, B. Romanowicz, J. F. Karczewski, A first step towards an Oceanic Geophysical observatory, EOS, Trans. Am. Geophys. Union 75, 150–154 (1994)

    Article  ADS  Google Scholar 

  28. K. Suyehiro, T. Kanazawa, N. Hirata, M. Shinohara, H. Kinoshita, Broadband downhole digital seismometer experiment at site 794: a technical paper, Proc. ODP, Sc. Results, (1992) p. 127–128

    Google Scholar 

  29. J. H. Woodhouse, F. A. Dahlen, The effect of a general aspherical perturbation on the free oscillations of the Earth, Geophys. J. R. Astron. Soc. 53, 335–354 (1978)

    MATH  ADS  Google Scholar 

  30. A. R. Edmonds, Angular Momentum and Quantum Mechanics (Priceton University Press, Priceton NJ, 1960)

    Google Scholar 

  31. J.-P. Montagner, Where can seismic anisotropy be detected in the Earth’s mantle? In boundary layers..., Pure Appl. Geophys. 151, 223–256 (1998)

    Article  ADS  Google Scholar 

  32. L. Peselnick, A. Nicolas, P. R. Stevenson, Velocity anisotropy in a mantle peridotite from Ivrea zone: Application to upper mantle anisotropy, J. Geophys. Res. 79, 1175–1182 (1974)

    Article  ADS  Google Scholar 

  33. D. L. Anderson, Theory of the Earth (Blackwell, Oxford 1989)

    Google Scholar 

  34. V. Babuska, M. Cara, Seismic Anisotropy in the Earth (Kluwer Academic, Dordrecht 1991)

    Google Scholar 

  35. A. E. Ringwood, Composition and petrology of the Earth’s mantle (McGraw-Hill, New York 1975) pp. 618

    Google Scholar 

  36. N. I. Christensen, S. Lundquist, Pyroxene orientation within the upper mantle, Bull. Geol. Soc. Am. 93, 279–288 (1982)

    Article  Google Scholar 

  37. J.-P. Montagner, D. L. Anderson, Constraints on elastic combinations inferred from petrological models, Phys. Earth Planet. Int. 54, 82–105 (1989)

    Article  ADS  Google Scholar 

  38. D. L. Anderson, J. D. Bass, Mineralogy and composition of the upper mantle, Geophys. Res. Lett. 11, 637–640 (1984)

    Article  ADS  Google Scholar 

  39. D. L. Anderson, J. D. Bass, Transition region of the Earth’s upper mantle, Nature 320, 321–328 (1986)

    Article  ADS  Google Scholar 

  40. L. Peselnick, A. Nicolas, Seismic anisotropy in an ophiolite peridotite. Application to oceanic upper mantle, J. Geophys. Res. 83, 1227–1235 (1978)

    Article  ADS  Google Scholar 

  41. A. Nicolas, Why fast polarization directions of SKS seismic waves are parallel to mountain belts? Phys. Earth Planet. Int. 78, 337–342 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Vauchez, A. Nicolas, Mountain building: strike-parallel motion and mantle anisotropy, Tectonophysics 185, 183–191 (1991)

    Article  ADS  Google Scholar 

  43. N. M. Ribe, Seismic anisotropy and mantle flow, J. Geophys. Res. 94, 4213–4223 (1989)

    Article  ADS  Google Scholar 

  44. D. L. Anderson, Elastic wave propagation in layered anisotropic media, J. Geophys. Res. 66, 2953–2963 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  45. K. Aki, K. Kaminuma, Phase velocity of Love waves in Japan (part 1): Love waves from the Aleutian shock of March 1957, Bull. Earthq. Res. Inst. 41, 243–259 (1963)

    Google Scholar 

  46. H. Hess, Seismic anisotropy of the uppermost mantle under the oceans, Nature 203, 629–631 (1964)

    Article  ADS  Google Scholar 

  47. L. P. Vinnik, G. L. Kosarev, L. I. Makeyeva, Anisotropiya litosfery po nablyu-deniyam voln SKS and SKKS, Dokl. Akad. Nauk USSR 278, 1335–1339 (1984)

    Google Scholar 

  48. L. P. Vinnik, R. Kind, G. L. Kosarev, L. I. Makeyeva, Azimuthal Anisotropy in the lithosphere from observations of long-period S-waves, Geophys. J. Int. 99, 549–559 (1989)

    Article  ADS  Google Scholar 

  49. L. P. Vinnik, V. Farra, B. Romanowicz, Azimuthal anisotropy in the earth from observations of SKS at GEOSCOPE and NARS broadband stations, Bull. Seism. Soc. Am. 79, 1542–1558 (1989)

    Google Scholar 

  50. L. Vinnik, L. I. Makayeva, A. Milev, A. Y. Usenko, Global patterns of azimuthal anisotropy and deformations in the continental mantle, Geophys. J. Int. 111, 433–447 (1992)

    Article  ADS  Google Scholar 

  51. M. Ando, ScS polarization anisotropy around the Pacific Ocean, J. Phys. Earth 32, 179–196 (1984)

    Google Scholar 

  52. J. Fukao, Evidencec from Core-reflected Shear waves for Anisotropy in the Earth’s mantle, Nature 309, 695–698 (1984)

    Article  ADS  Google Scholar 

  53. M. Ando, Y. Ishikawa, F. Yamazaki, Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan, J. Geophys. Res. 88, 5850–5864 (1983)

    Article  ADS  Google Scholar 

  54. J. R. Bowman, M. Ando, Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone, Geophys. J. R. Astron. Soc. 88, 25–41 (1987)

    Google Scholar 

  55. P. G. Silver, W. W. Chan, Implications for continental structure and evolution from seismic anisotropy, Nature 335, 34–39 (1988)

    Article  ADS  Google Scholar 

  56. V. Ansel, H.C Nataf, Anisotropy beneath 9 stations of the Geoscope broadband network as deduced from shear wave splitting, Geophys. Res. Lett. 16, 409–412 (1989)

    Article  ADS  Google Scholar 

  57. P. G. Silver, Seismic anisotropy beneath the continents: Probing the depths of geology, Annu. Rev. Earth Planet. Sci. 24, 385–432 (1996)

    Article  ADS  Google Scholar 

  58. A. Levshin, L. Ratnikova, Apparent anisotropy in inhomogeneous media, Geophys. J. R. Astron. Soc. 76, 65–69 (1984)

    Google Scholar 

  59. D. W. Forsyth, The early structural evolution and anisotropy of the oceanic upper mantle, Geophys. J. R. Astron. Soc. 43, 103–162 (1975)

    Google Scholar 

  60. B. J. Mitchell, G.-K. Yu, Surface wave dispersion, regionalized velocity models and anisotropy of the Pacific crust and upper mantle, Geophys. J. R. Astron. Soc. 63, 497–514 (1980)

    Google Scholar 

  61. J.-P. Montagner, Seismic anisotropy of the Pacific Ocean inferred from long-period surface wave dispersion, Phys. Earth Planet. Int. 38, 28–50 (1985)

    Article  ADS  Google Scholar 

  62. T. Tanimoto, D. L. Anderson, Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s, J. Geophys. Res. 90, 1842–1858 (1985)

    Article  ADS  Google Scholar 

  63. E. Debayle, J.-J. Lévêque, Upper mantle heterogeneities in the Indian Ocean froml waveform inversion, Geophys. Res. Lett. 24, 245–248 (1997)

    Article  ADS  Google Scholar 

  64. D. Suetsugu, I. Nakanishi, Regional and azimuthal dependence of phase velocities of mantle Rayleigh waves in the Pacific Ocean, Phys. Earth Planet. Int. 47, 230–245 (1987)

    Article  ADS  Google Scholar 

  65. C. E. Nishimura, D. W. Forsyth, The anisotropic structure of the upper mantle in the Pacific, Geophys. J. 96, 203–229 (1989)

    Article  ADS  Google Scholar 

  66. G. Silveira, E. Stutzmann, J.-P. Montagner and L. Mendes-Victor, Anisotropic tomography of the Atlantic Ocean from Rayleigh surface waves, Phys. Earth Planet. Int. 106, 259–275 (1998)

    Article  ADS  Google Scholar 

  67. O. Hadiouche, N. Jobert and J. P. Montagner, Anisotropy of the African continent inferred from surface waves, Phys. Earth Planet. Int. 58, 61–81 (1989)

    Article  ADS  Google Scholar 

  68. D.-A. Griot, J.-P. Montagner, P. Tapponnier, Surface wave phase velocity and azimuthal anisotropy in Central Asia, J. Geophys. Res. 103, 21215–21232 (1998)

    Article  ADS  Google Scholar 

  69. D.-A. Griot, J.-P. Montagner, P. Tapponnier, Heterogeneous versus homogeneous strain in Central Asia, Geophys. Res. Lett. 25, 1447–1450 (1998)

    Article  ADS  Google Scholar 

  70. J. J. Lévêque, M. Cara, Inversion of multimode surface wave data: evidence for sub-lithospheric anisotropy, Geophys. J. R. Astron. Soc. 83, 753–773 (1985)

    Google Scholar 

  71. M. Cara, J.-J. Lévêque, Anisotropy of the asthenosphere: The higher mode data of the Pacific revisited, Geophys. Res. Lett. 15, 205–208 (1988)

    Article  ADS  Google Scholar 

  72. J.-P. Montagner, H.-C. Nataf, On the inversion of the azimuthal anisotropy of surface waves, J. Geophys. Res. 91, 511–520 (1986)

    Article  ADS  Google Scholar 

  73. S. Crampin, An introduction to wave propagation in anisotropic media, Geophys. J. R. Astron. Soc. 76, 17–28 (1984)

    Google Scholar 

  74. J.-P. Montagner, N. Jobert, Investigation of upper mantle structure under young regions of the Sout-East Pacific using long-period Rayleigh waves, Phys. Earth Planet. Int. 27, 206–222 (1981)

    Article  ADS  Google Scholar 

  75. M. L. Smith, F. A. Dahlen, Correction to ‘The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium’, J. Geophys. Res. 80, 1923 (1975)

    Article  ADS  Google Scholar 

  76. G. Laske, G. Masters, Surface-wave polarization data and global anisotropic structure, Geophys. J. Int. 132, 508–520 (1998)

    Article  ADS  Google Scholar 

  77. E. W. Larson, J. Tromp, G. Ekström, Effects of slight anisotropy on surface waves, Geophys. J. Int. 132, 654–666 (1998)

    Article  ADS  Google Scholar 

  78. J.-P. Montagner, D.-A. Griot, J. Lavé, How to relate body wave and surface wave anisotropies?, J. Geophys. Res. 105, 19 015–19 027 (2000)

    Article  ADS  Google Scholar 

  79. J.-P. Montagner, Surface waves on a global scale — Influence of anisotropy and anelasticity, In Seismic Modeling of the Earth’s Structure, ed. by E. Boschi, G. Ekström, A. Morelli, Summer School of Erice, (Bologna 1996) p. 81–148

    Google Scholar 

  80. J. Bass, D. L. Anderson, Composition of the upper mantle: Geophysical tests of two petrological models, Geophys. Res. Lett. 11, 237–240 (1984)

    Article  ADS  Google Scholar 

  81. J.-P. Montagner, D. L. Anderson, Constrained reference mantle model, Phys. Earth Planet. Int. 58, 205–227 (1989)

    Article  ADS  Google Scholar 

  82. J. W. Schlue, L. Knopoff, Shearwave Polarization in the Pacific Ocean, Geophys. J. R. Astron. Soc. 49, 145–165, (1977)

    Google Scholar 

  83. A. M. Dziewonski, D. L. Anderson, Preliminary Reference Earth Model, Phys. Earth Planet. Int. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  84. D. L. Anderson, A. M. Dziewonski, Upper mantle anisotropy: Evidence from fre oscillations, Geophys. J. R. Astron. Soc. 69, 383–404 (1982)

    ADS  Google Scholar 

  85. G. Nolet, Higher Rayleigh modes in Western Europe, Geophys. Res. Lett. 2, 60–62 (1975)

    Article  ADS  Google Scholar 

  86. M. Cara, Regional variations of Rayleigh-mode velocities: a spatial filtering method, Geophys. J. R. Astron. Soc. 57, 649–670 (1978)

    Google Scholar 

  87. E. Okal, B.-G. Jo, stacking investigation of higher-order mantle Rayleigh waves, Geophys. Res. Lett. 12, 421–424 (1985)

    Article  ADS  Google Scholar 

  88. A. L. Lerner-Lam, T. H. Jordan, Earth structure from fundamental and higher-mode waveform analysis, Geophys. J. R. Astron. Soc. 75, 759–797 (1983)

    Google Scholar 

  89. G. Nolet, Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs, J. Geophys. Res. 95, 8499–8512 (1990)

    Article  ADS  Google Scholar 

  90. J. J. Lévêque, M. Cara, D. Rouland, Waveform inversion of surface-wave data: a new tool for systematic investigation of upper mantle structures, Geophys. J. Int. 104, 565–581 (1991)

    Article  ADS  Google Scholar 

  91. E. Stutzmann, J. P. Montagner, Tomography of the transition zone from the inversion of higher-mode surface waves, Phys. Earth Planet. Int. 86, 99–116 (1994)

    Article  ADS  Google Scholar 

  92. H. J. Van Heijst, J. Woodhouse, Measuring surface-wave overtone phase velocities using a mode-branch stripping technique, Geophys. J. Int. 131, 209–230 (1997)

    Article  ADS  Google Scholar 

  93. R. Snieder, Surface wave inversions on a regional scale, In Seismic Modeling of Earth Structure, ed. by E. Boschi, G. Ekström, A. Morelli, Summer School of Erice, (Bologna 1996) p. 149–182

    Google Scholar 

  94. G. E. Backus, F. Gilbert, Numerical applications of a formalism for geophysical inverse problems, Geophys. J. R. Astron. Soc. 13, 247–276 (1967)

    ADS  Google Scholar 

  95. G. E. Backus, J. F. Gilbert, The resolving power of gross earth data, Geophys. J. R. Astron. Soc. 16, 169–205 (1968)

    MATH  ADS  Google Scholar 

  96. G. E. Backus, F. Gilbert, Uniqueness in the inversion of inaccurate gross earth data, Philos. Trans. R. Soc. Lond. Ser. A 266, 123–192 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  97. A. Tarantola, B. Valette, Generalized non-linear inverse problems solved using the least squares criterion, Rev. Geophys. Space Phys. 20, 219–232 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  98. T. Tanimoto, The Backus-Gilbert approach to the three-dimensional structure in the upper mantle, 1. Lateral variation of surface wave phase velocity with its error and resolution, Geophys. J. R. Astron. Soc. 82, 105–123 (1985)

    Google Scholar 

  99. A. M. Dziewonski, J. H. Woodhouse, Global images of the Earth’s interior, Science 236, 37–48 (1987)

    Article  ADS  Google Scholar 

  100. R. A. Fisher, Dispersion on a sphere, Proc. R. Soc. London A 217, 295 (1953)

    Article  MATH  ADS  Google Scholar 

  101. J.-P. Montagner, Regional three-dimensional structures using long-period surface waves, Ann. Geophys. 4, B3, 283–294 (1986)

    Google Scholar 

  102. P. Ho-Liu, J.-P. Montagner, H. Kanamori, Comparison of iterative back-projection inversion and generalized inversion without blocks: Case studies in Attenuation tomography, Geophys. J. 97, 19–29 (1989)

    Article  ADS  Google Scholar 

  103. J.-P. Montagner, N. Jobert, Vectorial Tomography. II: Application to the Indian Ocean, Geophys. J. R. Astron. Soc. 94, 309–344 (1988)

    Google Scholar 

  104. J.-P. Montagner, H.-C. Nataf, Vectorial Tomography. I: Theory, Geophys. J. R. Astron. Soc. 94, 295–307 (1988)

    MATH  Google Scholar 

  105. T. Tanimoto, Long-wavelength S-wave velocity structure throughout the mantle, Geophys. J. Int. 100, 327–336 (1990)

    Article  ADS  Google Scholar 

  106. B. H. Hager, R. W. Clayton, M. A. Richards, R. P. Comer, A. M. Dziewonski, Lower mantle heterogeneity, dynamic topography and the geoid, Nature 313, 541–545 (1985)

    Article  ADS  Google Scholar 

  107. J.-P. Montagner, What can seismology tell us about mantle convection? Rev. Geophys. 32, 115–137 (1994)

    Article  ADS  Google Scholar 

  108. J. B. Minster, T. H. Jordan, Present-day plate motions, J. Geophys. Res. 83, 5331–5354 (1978)

    Article  ADS  Google Scholar 

  109. V. Babuska, J.-P. Montagner, J. Plomerova, N. Girardin, Age-dependent large-scale fabric of the mantle lithosphere as derived from surface-wave velocity anisotropy, Pure Appl. Geophys. 151, 257–280 (1998)

    Article  ADS  Google Scholar 

  110. G. Masters, T. H. Jordan, P. G. Silver, F. Gilbert, Aspherical Earth structure from fundamental spheroidal-mode data, Nature 298, 609–613 (1982)

    Article  ADS  Google Scholar 

  111. J.-P. Montagner, B. Romanowicz, Degrees 2, 4, 6 inferred from seismic tomography, Geophys. Res. Lett. 20, 631–634 (1993)

    Article  ADS  Google Scholar 

  112. A. Cazenave, A. Souriau, K. Dominh, Global coupling of Earth surface topography with hotspots geoid and mantle heterogeneities, Nature 340, 54–57 (1989)

    Article  ADS  MATH  Google Scholar 

  113. M. A. Richards, B. H. Hager, The Earth’s geoid and the large scale structure of mantle convection, In The Physics of the Planets, ed. by S.J. Runcorn (Wiley, New York 1988) p. 247–271

    Google Scholar 

  114. L. Vinnik, J.-P. Montagner, Shear wave splitting in the mantle from Ps phases, Geophys. Res. Lett. 23, 2449–2452 (1996)

    Article  ADS  Google Scholar 

  115. Y. Capdeville, E. Stutzmann, J.-P. Montagner, Effect of a plume on long period surface waves computed with normal mode coupling, Phys. Earth Planet. Int. 119, 57–74 (2000)

    Article  ADS  Google Scholar 

  116. J. Ying, H. C. Nataf, Detection of mantle plume in the lower mantle by deffrection tomography, Earth Planet. Sci. Lett. 159, 87–98 (1998)

    Article  ADS  Google Scholar 

  117. E. Hunter, J. L. Thirst, J.-P. Montagner, Global correlations of ocean ridge basalt chemistry with seismic tomographic images, Nature 364, 225–228 (1993)

    Article  ADS  Google Scholar 

  118. F. Birch, Elasticity and constitution of the Earth’s interior, J. Geophys. Res. 57, 227–228, (1952)

    Article  ADS  Google Scholar 

  119. P. G. Silver, W. W. Chan, Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res. 96, 16429–16454 (1991)

    Article  ADS  Google Scholar 

  120. J.-P. Avouac, P. Tapponnier, Kinematic model of active deformation in central Asia, Geophys. Res. Lett. 20, 895–898 (1993)

    Article  ADS  Google Scholar 

  121. P. England, G. Houseman, Finite strain calculations of continental deformation, 2. comparison with the India-Asia collision zone, J. Geophys. Res. 91, 3664–3676 (1986)

    Article  ADS  Google Scholar 

  122. E. Clévédé, P. Lognonné, Fréchet derivatives of coupled seismograms with to an anelastic rotating Earth, Geophys. J. Int. 124, 456–482 (1996)

    Article  ADS  Google Scholar 

  123. L. Peselnick, A. Nicolas, P. R. Stevenson, Velocity anisotropy in a mantle peridotite from Ivrea zone: Application to upper mantle anisotropy, J. Geophys. Res. 79, 1175–1182 (1974)

    Article  ADS  Google Scholar 

  124. M. L. Smith, F. A. Dahlen, The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium, J. Geophys. Res. 78, 3321–3333 (1973)

    Article  ADS  Google Scholar 

  125. Y. Yu, J. Park, Anisotropy and coupled long-period surface waves, Geophys. J. Int. 114, 473–489 (1993)

    Article  ADS  Google Scholar 

  126. H. Takeuchi, M. Saito, Seismic surface waves, Methods Comput. Phys. 11, 217–295 (1972)

    Google Scholar 

  127. R. D. Van der Hilst, H. Karason, Compositional heterogeneity in the bottom 1000 km of the Earth’s mantle: Toward a hybrid convection model, Science 283, 1885–1888 (1999)

    Article  ADS  Google Scholar 

  128. G. Barruol, D. Mainprice, A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves, Phys. Earth Planet. Int. 78, 281–300 (1993)

    Article  ADS  Google Scholar 

  129. B. Dost, Upper mantle structure under western Europe from fundamental and higher mode surface waves using the NARS array, Geophys. J. R. Astron. Soc. 100, 131–151 (1990)

    Google Scholar 

  130. G. Ekström, A. M. Dziewonski, The unique anisotorpy of the Pacific upper mantle, Nature 394, 168–172 (1998)

    Article  ADS  Google Scholar 

  131. T. Lay, T. C. Wallace, Modern Global Seismology (Academic, San Diego, Calif. 1995)

    Google Scholar 

  132. H.-C. Nataf, Y. Ricard, 3-SMAC: An a priori tomographic model of the upper mantle based on geophysical modeling, Phys. Earth Planet. Int. 95, 101–122 (1996)

    Article  ADS  Google Scholar 

  133. R. Snieder, B. Romanowicz, A new formalism for the effect of lateral heterogeneity on normal modes and surface waves, I: Isotropic perturbations, perturbations of interfaces and gravitational perturbations, Geophys. J. R. Astron. Soc. 92, 207–222 (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Montagner, JP. (2002). Seismic Anisotropy Tomography. In: Fink, M., Kuperman, W.A., Montagner, JP., Tourin, A. (eds) Imaging of Complex Media with Acoustic and Seismic Waves. Topics in Applied Physics, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44680-X_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-44680-X_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41667-8

  • Online ISBN: 978-3-540-44680-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics