Quantum Algorithms: Applicable Algebra and Quantum Physics

Part of the Springer Tracts in Modern Physics book series (STMP, volume 173)


Classical computer science relies on the concept of Turing machines as a unifying model of universal computation. According to the modern Church-Turing Thesis, this concept is interpreted in the form that every physically reasonable model of computation can be efficiently simulated on a probabilistic Turing machine. Recently this understanding, which was taken for granted for a long time, has required a severe reorientation because of the emergence of new computers that do not rely on classical physics but, rather, use effects predicted by quantum mechanics.


Quantum Computer Turing Machine Quantum Algorithm Wreath Product Quantum Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

There are no affiliations available

Personalised recommendations